
$16.95

Mark Overgaard
Stan Stringfellouv

p-SYSTEM DETAILS FOR YOUR COMPUTER

General Information

__ Personal computer type
Major p-System version number

Size

Storage volume characteristics

Device description

__ #4: storage device
__ #5: storage device
_ RAM disk volume name

Universal Medium accessibility
_ Utility to format disks
Need to Z(ero after formatting?

Special Keys for General p-System Use

[[ret]]
Ebsll
[[delete line]]
[[break]]
Estop/start]]
[[flush]]
[[esc]]
leof]]

Terminate response to a prompt
Move cursor back and erase character
Delete entire line
Interrupt current program
Stop or start console screen output
Discard output to console screen
Cancel current activity
End of file from CONSOLE:

Special Keys for Screen-oriented Editor Use

|[tab]]
Dup]]
[[down]]
[[right]]
[[left]]
Dexch-ins]]
Hexch-dell
Eetx]]

Move cursor to next tab stop
Move cursor up one line
Move cursor down one line
Move cursor right one position
Move cursor left one position
Insert blank character in X(change
Delete character in X(change
Complete an activity and accept

Other Notes

PERSONAL COMPUTING

WITH THE UCSD P-SYSTEM™

MARK OVERGAARD

STAN STRINGFELLOW
SoJTech Microsystems
San Diego, California

PRENTICE-HALL, INC.,

Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Overgaard, Mark (date)
Personal computing with UCSD p-System.

Bibliography: p.
Includes index.
I. UCSD p-system (Computer system) 2. Micro¬

computers— Programming. I. Stringfellow, Stan (date'
II. Title.
QA76.6.0925 1983 001.64 83-569
ISBN 0-13-658070-X

Editorial/production supervision: Nancy Milnamow

Cover design: Ray Lundgren

Manufacturing buyer: Gordon Osboume

UCSD p-System Personal Computing Series

© 1983 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book

may be reproduced in any form or
by any means without permission in writing

from the publisher.

Printed in the United States of America

10 987654321

ISBN D-13-bSflmt,-3
ISBN □-13-LSfiD7D-X IPBKI

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro
Prentice-Hall of Canada, Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore

Whitehall Books Limited, Wellington, New Zealand

CONTENTS

Preface. xi

Acknowledgements.... xiii

Introduction. 1

1 The Personal Computing Phenomenon.1
2 Components of a Personal Computer........3
3 Placing the p-System in Context.8
4 The Background of the p-System«....10
5 How to Use This Book.........12

1 GETTING STARTED: A Hands-on Tutorial

1 Managing Files and Running Programs.16

1.1 Introduction. 16
1.2 Acquiring and Installing a p-System.20
1.3 Starting Up the p-System.21
1.4 Interacting with the p-System....23
1.5 p-System Volumes.....28
1.6 Directories and Files. 30
1.7 Running Programs...31
1.8 Backing Up Your p-System Diskettes. 36
1.9 Changing the Calendar Date.......37
1.10 Moving Files Around...39
1.11 Text Files and Communication Volumes.... 43
1.12 Removing Files from a Volume....46

• • *
in

iv Contents

1.13 Multi-file Short Cuts.47
1.14 Dealing with Crowded Volumes.49
1.15 Dealing with Damaged Volumes.52
1.16 Acquiring p-System Application Programs.. 53
1.17 Using the Universal Medium.56
1.18 Applications That Use Real Numbers.58

2 Editing Text.60

2.1 Introduction.60
2.2 Looking at an Existing Text File.62
2.3 Creating a New Text File.66
2.4 Saving the Workspace on Disk.70
2.5 Deleting and Moving Text.71
2.6 Short Cuts for Text Creation.74
2.7 More on Cursor Movement. 76
2.8 Finding and Replacing Text Patterns.78
2.9 Entering Outline-structured Text.82
2.10 Paragraph-oriented Text.83
2.11 Changing Editor Modes.85
2.12 Working with Paragraph-oriented Text.87
2.13 Producing Memos.91
2.14 Printing Text Files.95

3 Developing Programs.100

3.1 Introduction.100
3.2 Computer Languages.101
3.3 Languages Supported by the p-System.... 104
3.4 Using Pascal in the p-System.106

Setting Up For Pascal .106
Using Pascal .107

3.5 Using FORTRAN in the p-System.113
Setting up for FORTRAN .113
Using FORTRAN .116

3.6 p-System Workfiles.123
3.7 Coping with Execution Errors.130

2 GETTING INTERESTED: A Systematic Reference

4 The Operating System.137

4.1 Introduction.137
4.2 Starting the p-System...138

Contents ¥

4.3 Menus and Prompts.138
4.4 Special Keys... 140
4.6 Storage Volumes and Volume IDs.145
4.7 File Specification.146
4.8 The Arrangement of Files on a Disk.148
4.9 The System Files.150
4.10 Workfiles.153
4.11 Communication Volumes...155
4.12 Subsidiary Volumes......157
4.13 Libraries and Units.157
4.14 Redirection.159
4.15 Error Messages.159
4.16 Notational Conventions. 161
4.17 The Command Menu.162

Assemble.163
C(ompile.166
D(ebug.169
E(dit...170
F(ile.171
H(alt. 172
Initialize.173
L(ink.174
M(onitor. 176
R(un.178
U(ser Restart.179
X(ecute.180

5 The Editor.185

5.1 Introduction.185
5.2 Overview of the Editor.186
5.3 Cursor Movement.187

Direction Indicator .188
Repeat Factor .188
Cursor Movement Keys .189

5.4 Special Editor Keys......192
5.5 Entering And Removing Text.193
5.6 Text Appearance.194
5.7 Paragraph Separation.195
5.8 Markers...197
5.9 The Copy Buffer.197
5.10 Tokens and Literal Strings.199
5.11 Entering the Editor.200

vi Contents

5.12 Leaving the Editor. 201
5.13 The Editor Menu......205

A(djust.206
C(opy.209
D(elete.211
F(ind.213
I(nsert. 215
J(ump.219
K(olumn.220
M(argin.222
P(age.224
R(eplace.225
S(et E(nvironment.228
A(uto indent . 229
F(illing .229
L(eft, R(ight, and P(ara Margins .229
C(ommand ch . 230
S(et tabstops .230
T(oken def .231
The Rest of S(et Environment . 231
S(et M(arker.233
V(erify.234
X(change.235
Z(ap.237

6 The Filer.239

6.1 Introduction. 239
6.2 Viewing Files and Volumes.240
6.3 Creating and Removing Files.240
6.4 Moving Files Around. 241
6.5 Printing And Displaying Files.242
6.6 The Disk Surface.242
6.7 Entering and Exiting the Filer.243
6.8 Disk Swapping.243
6.9 The Filer Menu.... 244

B(ad Blocks.245
C(hange. 247
D(ate.249
E(xtended List.250
FQip Swap/Lock.252
G(et.253
K(runch.255
L(ist Directory.258

Contents
• •

Vll

M(ake.260
N(ew.262

0(n/0ff-Line. 263
P(refix.265
R(emove.267
S(ave.269
transfer.271
V(olumes.275
W(hat.277
X(amine.279
Z(ero.281

6.10 Subsidiary Volumes...283
6.11 Wild Cards.287

Removing Several Files from a Volume • • 290
Backing Up Disks Using Transfer.290

6.12 File and Directory Recovering.292
The Copydupdir and Markdupdir Utilities . 292
The Recover Utility .294

3 GETTING SERIOUS: A Larger View.295

7 Modules: A Theme of the p-System.296

7.1 Introduction.296
7.2 Using Modules to Achieve Portability.298
7.3 Using Modules in Program Development... 303
7.4 Using Modules During Program Execution. 307

8 Tools and Program Building Blocks.312

8.1 Editing and Printing Tools.313
Editing Text .314
Printing Files .315

8.2 Program Development.317
Compiling Programs .318
Debugging Programs .319
Optimizing Programs .322

8.3 Application Building Blocks.324
Operating System Units .325
File Management Units .327
Xenofile .328
KSAM .328
Turtlegraphics .329

Contents

9 Further Reading.331

9.1 p-System Reference Manuals.332
Current Version IV.l Documents .333
Original Version IV.0/IV.1 Organization,.. 338

9.2 p-System Catalogs.339
9.3 Books on Pascal and UCSD Pascal.340

APPENDICES

A Error Messages for Major Activities.341

A.l Operating System Errors.342
A.2 Editor Errors.349
A. 3 Filer Errors.356

B Execution Errors. 362

B. l p-System Execution Errors.363
General Execution Errors .364
p-System I/O Errors .366

B. 2 FORTRAN Execution Errors.369

C Syntax Errors.372

C. l UCSD Pascal Syntax Errors.372
C. 2 FORTRAN-77 Syntax Errors.376

D Differences Among p-System Versions.382

D. l The p-System Family Tree.382
D. 2 Using This Book with Version IV.0.384

Notes for Chapter 1 .384
Notes for Chapter 2 .385
Notes for Chapter 3 .385
Notes for Chapter 4 .386
Notes for Chapter 5 .387
Notes for Chapter 6 .387
Notes for Chapter 8 .388

E The p-System on the IBM PC.389

E. l Starting the p-System the First Time.391
Recording Your p-System Details .391
Bootstrapping the p-System .393

E.2 Making Back Ups and Creating MYVOL:.. 395
E.3 Editor Set Up Details.397

Contents ix

E.4 Pascal Set Up Details.397
E.5 FORTRAN Set Up Details.398
E. 6 Dealing with a 40-character Screen.399

F The p-System on the TI Professional.401

F. l Starting the p-System the First Time.401
Recording Your p-System Details .401
Bootstrapping the p-System ..403

F.2 Making Back Ups and Creating MYVOL:.. 403
F.3 Editor Set Up Details.406
F.4 Pascal Set Up Details....406
F. 5 FORTRAN Set Up Details........406

G The p-System on Osborne Computers.407

G. l Starting the p-System the First Time.407
Recording Your p-System Details .407
Bootstrapping the p-System .409

G.2 Making Back Ups and Creating MYVOL:., 411
G.3 Editor Set Up Details.413
G. 4 Pascal and FORTRAN Set Up Details.... 414

H The p-System on Other Computers.415

H. l Starting the p-System the First Time.417
Recording Your p-System Details .417
Bootstrapping the p-System .419

H.2 Making Back Ups and Creating MYVOL:.. 419
H.3 Editor Set Up Details.422
H.4 Pascal Set Up Details.....423
H.5 FORTRAN Set Up Details..424

Glossary.425

Index 437

PREFACE

V

Personal computing is making use of a small computer to
assist you in your work or entertain you. This book is an
introduction to the UCSD p-System, a software environment
that can be used on most kinds of personal computers.

The p-System includes a set of fundamental tools for
using your computer. It also allows you to use a host of
specialized tools—called application programs—that address
specific needs. You can use these programs to help you
run a company, to write a book (as we did!), or even to
entertain yourself with an imaginary journey through a
strange land. You can also develop your own application
programs, either as serious tools or simply as interesting
and educational exercises.

We have paid particular attention to three types of
p-System uses: a) using application programs that others
have developed, b) editing and printing text (such as
memos), and c) developing your own programs.

In the area of developing programs, it is not our
objective to teach you programming or the details of any of

xi

xii Preface

the p-System programming languages. These topics are left
to the excellent programming texts that are available.
Instead, we address a topic that most of those books do not
cover: the specific details of entering a program into the
computer and preparing it for use.

In Part 1 of the book, called "Getting Started," we
show you enough of the capabilities of the p-System for
you to do useful work in any of these three areas of
interest. This part is organized so that you need to read
only the chapter or chapters that are relevant to your
interests. For instance, if you simply want to use available
application programs then you need to read just one chapter
in Part 1.

All the chapters in Part 1 use a "hands-on" approach.
They are intended to be read while you are sitting in front
of your personal computer. These chapters provide a step-
by-step introduction to the p-SystemTs facilities in each of
the three areas.

Part 2, called "Getting Interested," provides descriptions
of all the basic p-System facilities, organized so that you
can read them systematically or reference them
occasionally. In this part, each chapter discusses a major
component of the p-System, such as the text editor or the
file manager. There is some repetition of the material
presented in Part 1, because Part 2 is intended to be self-
contained.

"Getting Serious," Part 3, provides a "larger view" of
the p-System. One chapter describes aspects of the
p-System Ts design that may influence how you use the
system in the long term. A second chapter introduces the
wide range of additional tools and program building blocks
that are available for the p-System. We donTt teach you
how to use these facilities; we just want you to know
about them and how they might be useful to you.

We hope that these three Parts provide a useful mix of
step-by-step tutorial guidance, easily-understood reference
material, and valuable background information.

ACKNOWLEDGEMENTS

We are pleased to be able to thank a number of people who
assisted us in various ways in the preparation of this book.

A1 Irvine encouraged us in this project from the
beginning, made it possible for us to pursue it, and was
understanding when (particularly toward the end) it
consumed every spare moment, plus some moments not so
spare.

Bob Fenichel and Erik Smith, the authors of the
Sprinter II text formatting program with which we prepared
the master copy of this book, were zealous in their
dedication to the quality of their tool and in their help
with our special needs.

Texas Instruments, Inc., through Presley Smith and
Oscar Hughes, kindly provided professional renditions of the
sketches we did for the figures in this book.

Cindi Gunderson and her students at National University
used an early version of the book in a Pascal programming
course, and provided valuable feedback to us.

xm

xiv Acknowledgements

Numerous friends and colleagues provided useful
comments on all or parts of the manuscript: Elaine Bear,
Winsor Brown, Randy Clark, Beverly Graves, Steve Koehler,
Trevor Lawrence, and Linda Wildflower. Though we werenTt
able to adopt all their suggestions, we know that our book
is much better for their involvement.

We gratefully acknowledge each of these contributions
and hope that the final result is as pleasing for these
contributors as it is for us. (For many of them, and for
other important people in our lives, the long-awaited
completion of this project is reward enough!)

INTRODUCTION

1 THE PERSONAL COMPUTING PHENOMENON

The first electronic computers were "personal” in the sense
that they served one person at a time just like todayTs
personal computers. Those early computers were impersonal
in the sense that they required huge amounts of floor
space, power, and air conditioning. By comparison, today’s
personal computer can sit on a desk in an ordinary office
or travel to Afghanistan as an aid to a traveling reporter.
And yet these tiny packages of electronics are more
powerful than their giant predecessors!

Those early machines were also very difficult to use.
Today’s personal computers, in contrast, can be used by
almost anyone.

Even with the drawbacks of these early computers, it is
still a big surprise to learn that back in the early 1950’s
the total market for computers in the United States was
projected as less than one hundred machines. Today, the

1

2 Introduction

industry rallying cry is: TTA personal computer on every
desk!"

One of the reasons why these small computers are
popular is that they are very versatile. A reporter did, in
fact, take his computer to Afghanistan (during a war!) and
used it in preparing and editing his story. Personal
computers were used to write this book. Farmers in Neb¬
raska use personal computers to manage their dairy herds.
Mental health professionals use small computers to help
their clients develop an appreciation for their "biorhythms."

Two principal factors account in large part for the
dramatic difference in the way computers are used today,
compared to three decades ago. The first factor is
stunning advances in the physical technologies used. The
circuits that used to fill rooms have been shrunk to
patterns on pieces of silicon the size of your fingernail.
At the same time, these circuits have become much more
powerful.

The fundamental operations performed by today's
computers are not nearly as different from those of their
predecessors as you might expect, given the enormous
differences in physical construction. Today's computers still
use operations such as adding two numbers together, moving
a number from one place to another, or comparing two
numbers.

Why then are todayTs computers accessible to millions
while the early machines could only be used by the
scientific elite? The explanation is the dramatic dif¬
ferences in the software built from those fundamental
operations. Software turns an assembly of wires and tiny
silicon chips into a useful tool that can help you make
plans for a new business or control a model train.

Another name for software is programs. Computer
programs are detailed directions for a computer that guide
it in the performance of some task. Application programs
are those programs which address specific needs such as
keeping track of the accounts of a business. These
programs are ultimately composed of the simple primitive

Sec. 1 The Personal Computing Phenomenon 3

operations mentioned above (like adding two numbers
together). But they combine tens of thousands of these
instructions to achieve great internal complexity and power.
The challenge in developing one of these programs is in
harnessing this power in such a way that everyday use is
pleasant and productive, even for people who are not
computer experts.

There are two principal ways in which you can use
your computer. This book is intended for people with
either of these two kinds of interests in personal computer
software. First, you can use programs that others have
developed. These programs may provide entertainment (such
as a video action game), or they may serve a serious
business purpose (like getting out a payroll). To use
existing application programs, you usually donTt need much
technical background. Mostly, you need knowledge of the
application area in which you want computer assistance.

Second, you can develop your own programs.
Developing programs takes considerably more technical skill
than using programs that others have written. Program
development is still much easier, however, on todayTs
personal computers than it was f,back in the old days.”

This book does not have much to say about personal
computer hardware, since relatively little hardware
knowledge is needed for productive personal computing.
Instead, we concentrate on software. To provide a foun¬
dation for that discussion, however, it is necessary to
briefly sketch the hardware components of a personal
computer.

2 COMPONENTS OF A PERSONAL COMPUTER

A typical personal computer (an IBM Personal Computer) is
pictured in Figure 1. Even if your computer is not the
same as the one pictured, its major components are
probably similar.

4 Introduction

Figure 1

The first thing to notice is the keyboard, which is similar
to that of an ordinary typewriter. The alphabetic keys
("A" through "Z”) are laid out just like on a typewriter. A
large variety of special keys are available (only some of
which have corresponding versions on a typewriter).

Another necessary component of a personal computer is
the display, which looks like a television screen (and may
even be one!). The display is capable of showing
characters and in some cases graphic pictures.

Sec. 2 Components of a Personal Computer 5

Underneath the display of this computer (and out of
sight inside the unit) are its principal electronic
components, including the microprocessor, which directs its
operation, and the male memory, where computer
instructions and data are stored when they are being
actively used. On the right side of the unit is the main
power switch.

This particular kind of computer also has room in the
base unit for two disk drives. When a diskette (or disk) is
inserted in one of these drives, the computer can store
information on it and retrieve information from it. This
information is stored (relatively) permanently, even when
the diskette is not in use.

Another important (though optional) part of a personal
computer is a printer, which can be used to make
permanent printed copies of textual (and possibly graphic)
information stored in the computer.

Some computers have all of these components packaged
together. Others allow you to mix and match functional
components just as you can with a component stereo
system. For instance, the display and keyboard may be
packaged separately from the rest of the computer and
called the terminal.

Your personal computing can be very productive even if
you know very little about the inner workings of the
electronic and mechanical parts of your personal computer.
You do need, however, to know something about how
diskettes work so that you can handle them properly. When
diskettes are well cared for, they can last through years of
frequent use. When they are mistreated, however, valuable
data and instructions stored on them can be lost.

A diskette is pictured in Figure 2. There are several
kinds of diskettes, primarily distinguished by their sizes. A
particular computer usually uses only one of these sizes.
The most popular sizes are 8 inch, 5-1/4 inch, and 3-1/2
inch.

6 Introduction

LABELS

PROTECTIVE
ENVELOPE

PERMANENT
PLASTIC
JACKET

EXPOSED
RECORDING
SURFACE

HEAD DOT

Figure 2

All of these types of diskettes work in fundamentally the
same way. Their essential component is a circular piece of
magnetic material similar to recording tape. This material
is flexible and rather delicate, so it is protected by a
square plastic jacket. When the diskette is in use, the
recording material spins inside the jacket. A read/write
head comes in contact with the diskette through a "head
slot" in the protective jacket. This allows a computer to
play (read) or record (write) computer information on the
diskette just as a tape recorder plays or records music.

You should keep a diskette inside the protective
envelope when not in use, so that dust (and your fingers!)
do not come in contact with the magnetic material through
the head slot. Also, you should treat diskettes in a
friendly fashion—no folding, spindling, or mutilating!
Writing on the label with a ball-point pen or laying heavy
objects on the diskette can also be damaging.

Some personal computers use another kind of disk-
called a hard disk—usually in addition to diskettes (which
are also known as "floppy" or "flexible" disks). As the

Sec, 2 Components of a Personal Computer 7

name suggests, the principal distinguishing feature of a hard
disk is that the recording surface is rigid rather than
flexible. Hard disks usually have many times the storage
capacity of a diskette (along with substantially greater
access speed). Often the hard disks are not removable.
That is, there is no way to take the disk out of the drive
and put in another disk with different information on it.

Hard disks are not treated differently by the p-System
than flexible disks. If you use a hard disk on your
computer, however, you may have to adapt some of your
procedures. For instance, you may use different methods
for keeping back up copies of your important information.
Since hard disk handling procedures can vary widely among
brands of computers and brands of hard disks, we have
chosen not to cover them in this book. We concentrate,
instead, on the flexible disk environment.

On some personal computers, you can use part of the
main memory area to simulate a disk. (Because RAM—for
’’Random Access Memory”—is a popular name for main
memory, a disk simulated in main memory is often called a
RAM disk.) The main advantage of a RAM disk is that it is
extremely fast, since access to it occurs at electronic
speeds, rather than mechanical speeds. One disadvantage of
a RAM disk is that the information on it is generally lost
when the personal computer is turned off. (Mechanical
disks, on the other hand, can store information indefinitely.)
We don’t deal in detail with RAM disks in this book, but
we do mention them in a few places where their
differences might be a source of confusion for you.

One principal use of disks (whether flexible, rigid, or
RAM) is for storage of the software that makes your
personal computer a truly useful tool. The next section
discusses this software in general, and the p-System in
particular.

8 Introduction

3 PLACING THE p-SYSTEM IN CONTEXT

A personal computer system can be viewed as an inverted
triangle like that in Figure 3. The widest part of the
triangle represents the application programs that meet
specific needs of personal computer users like yourself.
Since there are so many users, each with a different
collection of needs, an astonishing quantity and variety of
application programs have been developed.

Figure 3

One reason why application developers are so prolific is
that they can depend on system software to handle the
fundamental interactions with the hardware, and to provide
the tools necessary for building application programs.

The p-System is one of the most widely used types of
system software for personal computers. It has several
major components. The most fundamental one is the
operating system, which is basically in charge of the
personal computer hardware (subject to your direction, of
course). One important thing you can do with the
operating system is start and stop programs. Even after
these programs are started, however, the operating system
is crucial to their continued operation. It handles the
details of reading information from disks and writing

Sec. 3 Placing the p-System in Context 9

information to them. It also manages the other peripherals
on your personal computer, including the keyboard, display,
and printer.

In the p-System, there are other system software
components such as a file manager that allows you to check
and rearrange stored information ("files") on disks, and text
editors, with which you can create, read, or modify stored
textual information.

If you are interested in developing your own programs,
the p-System includes a variety of facilities to assist you.
Most important are the computer language translators, which
take the programs you write and convert them to the coded
form that the computer understands. In Chapter 3, you will
use one of these translators to write some short programs.
There are also various other program development tools.
We leave further discussion of them to Chapter 8.

Figure 3 shows two categories of system software:
runtime software and development software. As the
names suggest, the first category is the software needed to
run existing programs, while the second category of
software is the tools you can use to build your own
programs. When the p-System is packaged in a runtime
configuration, the operating system and (sometimes) the file
manager are included. Some runtime configurations include
a text editor, as well. The development configuration
includes the runtime components, along with a host of
program development and other tools.

At the base of the structure in Figure 3 is the
personal computer hardware. A hallmark of the p-System is
its ability to run on almost all kinds of personal computers.
We have paid specific attention to two of those in this
book. In Chapter 7, we describe how this portability is
achieved.

10 Introduction

4 THE BACKGROUND OF THE p-SYSTEM

Development of the UCSD p-System was begun at the
University of California, San Diego (UCSD) in late 1974.
This early work was directed by Professor Kenneth Bowles.
The principal objective was to provide programming tools
for a large introductory course in computer science.

The course had previously used the central campus
computer and the Algol programming language, but Bowles
thought that small computers handling one student at a time
could provide a more responsive learning experience.
Furthermore, it seemed that the language Pascal was more
suited to teaching novice programmers than Algol (a
predecessor to Pascal). Finally, Pascal appeared to be
suitable as the implementation language for building the
necessary software tools.

Two principal objectives guided the early evolution of
what was initially known as the UCSD Pascal System:

o The System had to be easy for first-time computer
users to learn. It also had to be usable by experienced
programmers (such as those modifying or enhancing the
System, itself).

o The software had to run on small, inexpensive
computers comparable in capability to many personal
computers in use today. (For instance, those computers
had about 56,000 bytes of main memory and about
500,000 bytes of diskette storage.) This objective was
quite a challenge, since no one at the time had
succeeded in installing the Pascal language on machines
that small.

The UCSD Pascal System was initially intended for use
inside the University, but as word of the software spread,
copies were distributed to other campuses and to people in
industry starting in the summer of 1977. Then in May,
1978, an article describing the System appeared in Byte
magazine. The surprising result: the University received
over a thousand inquiries about the software from all over
the world!

Sec. 4 The Background of the p-System 11

It was soon clear that this level of demand could not
be met by the small University project, and a search began
for ways in which support for the growing community of
UCSD Pascal users could be moved off-campus. This search
ended in June, 1979, when the University awarded full
responsibility for support and continued evolution of the
UCSD Pascal System to SofTech Microsystems (SMS).

At the same time, the University reached agreements
with Apple Computer and Western Digital Corporation which
allowed those companies to market the UCSD Pascal System
on their computers. Apple’s version, dubbed Apple Pascal,
is now widely used on Apple II and Apple III computers. (If
you’re interested, Appendix D provides some further details
on the various versions of the p-System.)

One of the first moves of SMS was to add the
programming language FORTRAN as an alternative to UCSD
Pascal, originally the only programming language available
in the p-System. When the time came to name this new
product, several unappealing possibilities were considered:

o UCSD Pascal FORTRAN?

o UCSD Pascal System FORTRAN?

o FORTRAN for the UCSD Pascal System?

All these names sounded rather like ’’vanilla chocolate
ice cream.” Clearly the name ”UCSD Pascal System” was
not very compatible with the addition of FORTRAN to the
product line. That’s when the name of the main product
was changed to the UCSD p-System.

The burning question, of course, is ”What does the ’p’
in ’p-System’ stand for?” No one knows for sure, but there
has been plenty of speculation. One pair of enthusiastic
users wrote an article about the p-System that they called
”P for Perfect?”.

One possibility is that the ”p” stands for ’’Pascal,” since
even today, it is the principal language supported by the
p-System. Another possibility is that the ”p” stands for
’’personal,” since the p-System is a relatively friendly
software environment to work in. Better yet, the ”p" may

12 Introduction

stand for "portable," since the p-System is widely regarded
as the most portable system software for microcomputers.

The best solution is not to worry about that "p." If
for some reason you can't do that, the ultimate solution is
to make the "p" silent when you say "p-System."
p-Sychologists have been doing that for years!

Before discussing the p-System itself, we close this
introduction with some recommendations on how you might
proceed through the rest of this book.

5 HOW TO USE THIS BOOK

Here are the three parts of this book:

o Getting Started: A "Hands-on" Tutorial

o Getting Interested: A Systematic Reference

o Getting Serious: A Larger View

If you are new to personal computing, Part 1 is
designed for you. In it, we assume that you are sitting in
front of your personal computer and are able to follow
along and participate as we provide a tour through the
p-System. We strongly recommend that you don't try to skip
randomly around in Part 1, because you could easily stumble
into a part of the p-System that you aren't prepared to
deal with. You wouldnTt do any harm to the p-System or
to your computer, but you might get confused or frustrated.

We have organized this "Getting Started" part so that
you only need to read the chapter or chapters that deal
with the kind of use you want to make of the p-System. If
you simply want to use available application programs, you
can stop after Chapter 1. If you also want to use the text
editor (say, for some simple word processing), go on through
Chapter 2. Finally, if you want to develop your own
programs, you should work through all three chapters.

To follow along in Part 1, you need a computer and a
p-System that runs on it. The computer needs a display
and a keyboard of some sort and at least two disk drives.

Sec. 5 How to Use This Book 13

The p-System can be used with one-drive computers, but
the second drive results in so much more convenience that
we have assumed in this book that you have it. You can
use a printer, also, but that is not required.

Part 2 ("Getting Interested") is organized for easy
reference, though you may want to read straight through it.
In fact, if you are already an experienced computer user,
you may want to skim through Part 1, and concentrate on
Part 2, which contains most of the information presented in
Part 1, but with a more systematic organization. WhatTs
missing in Part 2 is the step-by-step directions intended to
keep a first-time computer user on the right track.

Part 2 concentrates on the basic facilities of the
p-System. For sophisticated work with the System, you still
need to use the standard reference manuals that come with
it.

Part 3 can be read at your leisure, but we recommend
that you take time for it as soon as you can. It should
improve your understanding of the p-System and how it can
be useful to you in the long term.

There are several versions of the p-System in wide use.
These tend to be similar in the overall way you use them,
but different in details. This book is oriented toward
Version IV of the p-System and emphasizes the most recent
release of that version, which is called IV.l. If youTre
using some other version of the p-System than either of
these two, you can get general help from this book, but
you should be prepared for the possibility that the
keystroke by keystroke descriptions in Part 1 may not be
exactly applicable on your computer. Similarly, the
p-System facilities discussed in the other two Parts may not
all be available on your system.

If youTre using Version IV.O, you should know that
Appendix D, "Differences Among p-System Versions,"
provides a chapter by chapter list of the portions of this
book that are affected by the differences between the IV.O
and IV.l versions. Before you begin reading in a chapter,

14 Introduction

you should check that appendix.

One of the big challenges in writing this book was
finding a way to deal with the inevitable differences that
exist between implementations of the p-System on different
types of personal computers. A major thrust of the
p-System is to minimize those differences, but they still
exist. This can be a source of confusion, particularly if
you are a beginner following the step-by-step instructions
of Part 1.

We have addressed this problem by providing appendices
that describe the specifics of the p-System on several of
the popular types of personal computers: the IBM Personal
Computer, the Texas Instruments Professional Computer, and
two Osborne computers—the Osborne 1 and the Executive.
If you have one of these computers, you will be in good
shape. If you have some other kind of computer, Appendix
H provides general guidance on the kind of computer-
specific information you need, and where it might be found
in the p-System documentation provided by your supplier.

Even for the two computers that we specifically cover,
these appendices are no substitute for the p-System manuals
provided with the software. We just provide enough
computer-specific information to get you going.

We have provided a place on the front inside cover of
this book for you to record the most important details
about the p-System on your computer. We suggest that,
early in Chapter 1, you "fill in the blanks" there. Once
you get that information recorded, the differences among
personal computer types should cause you few problems as
you proceed through the rest of this book.

WeTve also put the back inside cover to good use. On
one side, a quick index to the major facilities of the
p-System is provided. On the other side, the p-SystemTs
"File Conventions" are summarized. (Chapter 1 discusses
what "files" and "file conventions" are.)

Just in case you try to do an operation with the
p-System that is not allowed, you will be happy to know

Sec. 5 How to Use This Book 15

that, in Appendix A, we have listed the error messages that
can be produced by several of the major components of the
p-System, along with brief diagnoses of what might be
wrong in each case, and possible recovery actions.

In Appendix B, we provide similar advice on general
errors that can occur while youTre running an application
program.

Our overall goal has been to make your introduction to
the p-System, and your continued use of it, as pleasant and
productive as possible. We welcome you to the world of
personal computing with the UCSD p-System.

MANAGING FILES
AND RUNNING PROGRAMS

1.1 INTRODUCTION

This chapter shows you how to begin using p-System
programs that others have developed. If your principal
interest is in developing your own programs, this chapter
gives you the necessary foundation.

Hundreds of p-System programs are offered
commercially, covering a very broad range of application
areas. Here is a small sample, just to give you some
notion of the breadth of the possibilities:

o One application area that is well covered is known in
the trade as "GLAPAR," which stands for General
Ledger, Accounts Payable, and Accounts Receivable.
These fundamental areas of accounting are often the
first aspects of a small business to benefit from
computer assistance. Almost any business has needs in
this area, and a variety of p-System programs address
these needs.

16

Sec. 1.1 Introduction 17

o There are also industry-specific application packages in
such diverse areas as corn and soybean crop
management and resort rental properties handling.

o Various management productivity aids are available,
including several electronic spreadsheet simulators,
project planning tools, and tax planning systems.

o There is even entertainment software based on the
p-System, such as "Wizardry," an adventure and fantasy
game. This game simulates the adventures of a group
of explorers (including men, dwarfs, "mages" and
"berserkers") in a dangerous land.

How can you find out about p-System programs that
address specific needs that you have? One way is to
acquire the UCSD p-System Applications Catalog, which
is published periodically by SofTech Microsystems, and lists
commercially offered p-System applications. For each of
several hundred applications, a brief description, price
range, and ordering information are provided.

Another source of application leads (and lots of other
p-System information as well) is the UCSD p-System UserTs
Society (USUS—pronounced "Use Us"). This group publishes
a periodic newsletter. This newsletter includes a Vendor
Catalog that lists vendors of p-System applications and
other p-System-related products.

Chapter 9 provides details on how to get both of these
useful publications. You can get the newsletter by
becoming a member of USUS. If you do that, youTll be
able to take advantage of other USUS services as well,
such as a low-cost library of contributed software, bi¬
annual meetings, and various special interest groups.

Once you*ve located some application programs that
look useful, you need to know how to acquire them.
Application software that runs in the p-System is very
likely to be usable on your computer, but you still need to
be careful in making acquisitions. The last sections of this
chapter discuss this topic. Of particular interest is the
Universal Medium, a way of distributing p-System

18 Managing Files and Running Programs Chap, 1

applications that makes them available for most kinds of
personal computers that use 5-1/4 inch diskettes.

What do you need to know about the p-System to use
these tools? It depends on the program.

For example, you often need facilities for making "back
up" copies of information created by an application program
on disk. Sometimes these facilities are built into the
application program, but often the program depends on
general p-System tools to meet this need. If every
application you use provides these housekeeping functions,
then you have little immediate need to know the material
presented in this chapter. In most cases, however, this
chapter will be useful, and perhaps even crucial, to your
productive personal computing with the p-System.

Before we get into specific details on p-System
facilities, some background on the concepts of programs and
files is necessary.

Files in the p-System environment are collections of
(usually related) information. They are similar to the
everyday file folders that are used to keep information
organized in an office. In the office, files are stored in
file drawers. When p-System files are stored, disks play
the role of file drawers. Each p-System file has a name.
Two files on the same disk cannot have the same name.
You can think of diskettes as small file drawers that you
can remove and replace as you want to use the files on
them with the p-System.

Most application programs use files, either to store
information for later reference or to reference previously
stored information. Some programs, such as the "Wizardry"
adventure game mentioned above, have no need for file
storage, since each use of this program is a self-contained
experience. However, this type of program is the
exception.

Files on p-System disks are permanently stored (at least
as long as you donTt damage the disks or explicitly discard
the files). The more personal computing you do with the

Sec. 1.1 Introduction 19

p-System, the more you will come to depend on your stored
files, and the more careful you will need to be in
preserving them.

What are programs? The noun "program” usually refers
to a detailed schedule of events and participants in an
activity (say, a graduation ceremony, or a picnic). In the
computer context, program has a similar meaning, except
that a program for a computer must be very detailed and
explicit, since computers have none of the judgement and
common sense that we take for granted in human beings.
In fact, one of the research frontiers in computer science
is the creation of programs that would allow a computer-
controlled robot to navigate among the rooms of a house
without demolishing the furniture!

Programs are stored as files on p-System disks. A
program file contains the coded computer instructions that
direct the operation of a computer when that program is in
control. Many programs contain thousands (or even tens of
thousands!) of coded instructions.

When a computer follows the instructions of a program,
it is said to execute the program. The same word can be
used when you start up a program: You "execute" it.
"Running" a program means the same thing.

Now itTs time for you to see files and programs in
action by using the p-System yourself. If you already have
a p-System that is ready to run on your computer, your
next step is to start using it. To do that, skip the
following section and go on to the section called "Starting
Up the p-System."

If you don’t already have a p-System that runs on your
computer, read the following section to learn what’s
involved in acquiring a p-System.

20 Managing Files and Running Programs Chap. 1

1.2 ACQUIRING AND INSTALLING A p-SYSTEM

We mentioned in the introductory chapter that one of the
hallmarks of the p-System is its ability to run on most
kinds of personal computers. For each type of computer on
which the p-System runs, there is a portion of the system
that is specific to that computer. This computer-specific
portion of the p-System caters to the particular type of
microprocessor used in the computer, and to the details of
the input/output devices that are attached. In order to run
the p-System on your computer, you need a p-System with
the right computer-specific portions installed. (Chapter 7
provides additional details on these computer-specific
p-System components.)

One attractive source of a p-System for your computer
is the vendor that provided your hardware. If that vendor
or other local dealers canTt provide a p-System for your
use, you can acquire the UCSD p-System Implementations
Catalog from SofTech Microsystems. This catalog (which is
updated periodically) lists the known vendors of p-Systems
that have been adapted to particular computers. The USUS
Vendor Catalog (mentioned above) is another source of this
kind of information. See Chapter 9 for details.

If no one provides a pre-configured p-System for your
type of computer, you may be able to acquire an
Adaptable System from SofTech Microsystems and do the
installation yourself. Be forewarned, however, that this
installation process is likely to involve sophisticated low-
level programming (probably several weeks of it, at least).
You probably shouldnTt attempt the job unless you are an
experienced programmer and have detailed knowledge of the
internal operation of your computer.

Even if you can acquire a p-System that runs on your
computer, there may still be one (relatively simple)
configuration step that you have to handle. On some
computers, the terminal component (made up of the screen
and keyboard) is not integrated with the rest of the
computer. On this kind of computer, different types of
terminals can be connected, each with its own peculiar
conventions about communication with your computer. If
your computer is like this, you may need to adapt the

Sec. 1.2 Acquiring and Installing a p-System 21

p-System to your terminal. This adaptation can probably be
done in a few hours. You may need to do a small amount
of Pascal programming.

If you need to do any adaptation work in order to
install the p-System on your computer, we recommend that
you read over a good part of this chapter (at least through
section 1.7) before you begin the adaptation. Even though
you canTt see the p-System operating during this dry run,
you should still get a very useful introduction to the use of
the p-System. That introduction should make your adaptation
project easier.

1.3 STARTING UP THE p-SYSTEM

Once you have an appropriate p-System, you need to load it
into your computer so you can use it. The process is
really quite simple, though the details vary with computer
types. Usually you start with the main power switch for
your computer in the off position. Then you insert the
diskette containing the p-System into the primary disk drive
and turn the main power switch on. (On some computers,
itTs important that you turn on the main power before
inserting a disk in a disk drive, since the disk could be
damaged otherwise.)

The start up process is also called bootstrapping, by
analogy with the phrase "pulling yourself up by your
bootstraps."

One of the first concepts you'll need as you begin to
use the p-System is the notion of special keys on your
keyboard. These keys are called "special" because they do
not represent standard letters, numbers, or symbols.
Instead, they have special meanings, such as "erase the last
character typed." For instance, the special key Ibsl
(pronounced "backspace") allows you to erase and correct
typing errors. Throughout this book, we use the double
bracket symbols "O" to enclose the names of special keys.

Now you need to start up the p-System on your own
computer so that you can follow along as we explore the
capabilities of the p-System. The details of that start-up

22 Managing Files and Running Programs Chap. 1

process depend on what kind of computer you have. The
way in which you type p-System special keys also depends
on the kind of computer you have. Therefore we address
both of these topics in the computer-specific appendices to
this book that were mentioned earlier.

Locate the appendix that deals with your computer and
read the introduction and the first section: ,TStarting Up
the p-System for the First Time.” If you have:

o an IBM Personal Computer, read Appendix E.

o a TI Professional Computer, read Appendix F.

o an Osborne computer, read Appendix G.

o any other kind of computer, read Appendix H.

After you follow the instructions in the appropriate
appendix, you should have filled in your inside cover
(describing the details of the p-System on your computer),
your p-System should be running, and your display screen
should look something like this:

Command: E(dit, R(un, F(He» C(omp# LUnk, X(ecute, A(ssem, D(ebug,? C]

Welcome SYSTEM, to

U.C.S.D. p-System [version]

Current date Is January 1, 1983

What if the top line of your screen shows only part of
the top line in the screen image above? DonTt panic! The
likely reason is that your computer's display is not set up
to show the entire width of an 80-character line. If this
appears to be your situation, check the documentation for

23 Sec. 1.3 Starting Up the p-System

your p-System (or the appropriate computer-specific
appendix to this book). It is possible, for instance, that all
80 columns of the screen above are stored in your
computer, and that there are special keys you can type to
choose which portion of the 80 columns you want to see.

In the remainder of this book, we assume that you have
an 80-eolumn screen. All sample screen images have this
width. It should be easy for you to follow along, even if
the lines on your screen are not as wide as those shown
here.

One other note: on some computers, the greeting lines
(starting with "Welcome") shown in the sample above are
replaced by some other kind of welcome message, such as a
company logo. The display in Figure 1 (in the introductory
chapter) shows an example of such a logo. In Chapter 4,
we describe how this is accomplished via a special file on
your disk called SYSTEM.STARTUP, and how you can
modify your disk so that the standard p-System greeting
lines appear, instead of the logo.

1.4 INTERACTING WITH THE p-SYSTEM

In the center of the screen on the previous page are three
"greeting" lines that the p-System displays when it has just
been started. We discuss this greeting in detail later in
this book. For now, let’s concentrate on the line at the
top of your screen. It is called a menu because it shows
you the p-System actions that you may select.

The p-System makes wide use of this menu concept.
The main reason for this approach is to make the System
easy to use. These menus help you use the system,
especially those parts of the system that you don’t use very
often.

Menus in the p-System are usually displayed on the top
line of your console screen. They list a set of activities
that are available to you. Each menu has a name (like
"appetizers" or "desserts"), that appears as its first word.
Succeeding words indicate the activities that can be
selected from that menu.

24 Managing Files and Running Programs Chap. 1

If you look at the screen, you can see the Command
menu. This is the main menu of the p-System, and the
activities listed here are the major ones available. You
can select an activity from a menu by typing the first
letter of the activity name. The TT(n after the first letter
tells you that you only need to type that first letter.
Even though a capital letter is shown (for example, ”E” for
”E(dit”), lower case letters can also be used to select menu
items.

The first part of this book (through Chapter 3) is
designed for you to "follow along” on a step-by-step basis.
Underlining emphasizes characters or keys that you are
expected to type immediately on your personal computer
keyboard. Even though you can use either capital letters
or lower case letters to select from menus, we always show
those selection keys as capital letters.

When a ”?” appears on a menu, that is a sign that
there are more activities in that menu than can be listed
on the screen. You can see the rest by typing _?.
(Remember that you should type underlined characters
directly on your keyboard!) Here is the line you should
see:

iandx H(alt# Knltlallze, M(onl+or, IHser restart [3

Notice that there is no question mark on this extension
because there are no further activities in the Command
menu.

The last item on a menu (generally enclosed in square
brackets ("[]”) is a version number. This number indicates
which version of a p-System component youTre using. A
typical version number on the Command menu might be
”IV.12A”. If you have this legend on your command line,
the major version of your p-System is IV. 1, and you have
variation ”2A" of that.

In this book, we have deleted the version numbers from
the menus we show, so as not to confuse you. Most of the
directions we provide in this book should work for any

Sec. 1.4 Interacting with the p-System 25

Version IV p-System. The exceptions to this general rule are
spelled out in Appendix D, differences Among p-System
Versions.” If youTre using Version IV.O, you should be
checking that appendix at the beginning of each chapter to
find out what to expect.

The sequence of menu portions that you see each time
you type ”?” may be different from that shown above. If
so, your p-System has been configured for some other
screen width than 80 columns. The p-System always shows
as many activity names as it can within the defined screen
width. If there are more activities to show, the ”?”
appears to remind you.

It is not necessary for an activity to be visible on the
menu in order for you to use it. You can select any of
the activities of a menu, no matter which part of it is
visible.

To prove that, select the F(ile activity from the
Command menu by typing F. This activity allows you to do
housekeeping operations involving the files on your diskettes
and a variety of other useful tasks. After some disk
activity, a new menu ("Filer”) appears:

G(e+, hat# N(ew» L(dlr» R(em> C(hng# T(rans# D(a+e>? C 3

One of the activities that can be selected from this
menu is Q(uit. Try typing (£. You should shortly see the
Command menu again. You have now left the F(ile
housekeeping activity altogether.

When you typed ”Q”, just now, you probably waited
until you could see, by the presence of the Filer menu,
that the p-System was waiting for your next selection.
Many p-System implementations have a capability called
type ahead, which allows you to type characters into the
p-System even if it is still working on responding to earlier
characters you typed. Thus, for instance, you could type
”F” and ”Q” in quick succession. After the Filer menu was
displayed as a result of the ”F”, the p-System would
immediately process the ”Q”, and leave the Filer.

26 Managing Files and Running Programs Chap. 1

If you don’t have type ahead on your p-System, you
must wait to type each key until the p-System has
responded to your previous typing. If you don’t wait, some
of your input may be lost. If this happens, you (and the
p-System!) may get confused.

Just so you know where you stand on type ahead, we
suggest the following simple experiment. Type F Q in
quick succession. If the p-System briefly enters the Filer
and returns to the Command menu immediately, you
probably have type ahead support. If the p-System stays in
the Filer (as if you hadn’t typed ”Q”, for Q(uit), then you
probably don’t have type ahead.

You’re probably not very concerned, right now, about
typing many menu selections in quick succession. You may
happen to do so by chance, however, and then wonder why
the p-System ignored some of the keys you typed. We did
this small experiment here to prepare you for that
possibility. Even if this experiment indicates you have the
type ahead capability, it’s usually not a good idea to get
too many characters ahead of the p-System’s responses,
since you may make mistakes that might be difficult to
recover from. Furthermore, all p-Systems have some limit
on how far ahead you can get in your typing.

Now we return to consideration of the Command menu.
Another activity there is X(ecute, which allows you to
execute programs. Type X:

You haven’t seen this kind of question from the
p-System before. Previously, you were given a menu of
possible activities from which you could make a choice by
typing a single letter. Now you are being asked to answer
a question. You are expected to enter the name of the
program you want to X(ecute. This kind of question is
called a data entry prompt, or simply prompt. Your
response to a prompt tells the computer what you want it
to do.

Sec. 1.4 Interacting with the p-System 27

We are not prepared yet to actually execute a program,
but we take this opportunity to experiment with data entry
prompts and show you how they work.

Here is the procedure for responding to a data entry
prompt:

o Type in the sequence of characters that make up your
response.

o If you make a mistake, use the EbsJ key to erase the
incorrect characters; then type the characters you
want.

o When you're satisfied with the response you've typed,
press the CretH key to signal the p-System that your
response is ready for processing.

If you don't remember how to type libs]] and EretU, the
notes you put in the front inside cover (earlier in this
chapter) should help. When you know where those keys are,
try typing an x. It is displayed on the screen after the TT?Tt,
and the cursor moves over to the next character position.
The cursor is a marker that indicates wThere the next
character that you type is put on the screen. Physically,
its appearance varies among brands of computers and brands
of displays. (For instance, it may be a solid block or an
underline that flashes.) On your computer, the cursor looks
like the character position right after the TTxTI you just
typed! Now type two more x characters, followed by three
lbs]] keys. All the characters you typed are now gone.

Now type zzzz followed by a IretJ. It is conventional
in the p-System for the name of a program file to have
".CODE" on the end of it, so the p-System automatically
adds that pattern to the name you entered and tries to find
that file. That search is unsuccessful, as the p-System
succinctly reports:

Commands E(d!t# R(un, F(lle, C(omp# LUnk, X(ecu+e, A(ssem, D(ebug, ? C 3
No file zzzz.CODE

■ n y,' mu

Notice that the Command menu has returned.

28 Managing Files and Running Programs Chap. 1

What if you mistakenly select an activity that involves
a data entry prompt? It is usually safe to provide an
empty entry by simply typing IretS. Try this with the
X(ecute activity. After typing X to invoke X(ecute, type
an immediate HretJ to the data entry prompt. The
p-System simply returns to the Command menu.

It's time to begin exploring what can be accomplished
in the F(ile activity. TyPe F to recall the Filer menu.
The activity we want to try out is V(olumes (abbreviated
ftV(olsT’ on the menu). As you can see, there is no such
activity visible on the Filer menu. When you check the
menu extension with "?", however, you should see the
V(olumes activity listed.

1.5 p-SYSTEM VOLUMES

Invoke V(olumes in the Filer menu with a V. After a short
pause, your screen should look something like this:

Filer: G(e+, S(ave» W(ha+» N(ew* L(dlr» R(era, C(hng, T(rans» D(a+e>? []
Vo Is on-11ne:

1 CONSOLE:
2 SYSTERM:
4 # SYSTEM: [3203
6 PRINTER:

Root voI Is - SYSTEM:
Prefix Is - SYSTEM:

You are back in the Filer menu, but there is new
information on the screen: a list of on-line volumes. What
is an on-line volume? For that matter, what is a volume?

One meaning of volume, is TTa p-System diskette." In
the display above, the volume named SYSTEM: is the disk
from which the p-System was loaded—the system disk. On
your display, the name on that line (after the "4 #") may
not be SYSTEM, but it is still the name of your system
disk.

(Another name for system volume is root volume. The
second-to-last line on the screen identifies the current
system volume. It is probably the volume that is loaded in
drive #4:. On some systems that have lots of main memory

Sec. 1.5 p-System Volumes 29

and RAM disk support, the system volume may be the RAM
disk.)

An on-line volume is one that is accessible to the
p-System. Try opening the cover door of the drive
containing your system diskette. Then invoke the V(olumes
activity again. The new list of on-line volumes has no
entry for your system diskette because the System cannot
read a diskette when the drive door is open. Each time
you select the V(olumes activity, the p-System does an
inventory of the accessible volumes and displays a list of
those it finds.

Now remove your system diskette from the drive and
put it into another drive. (Be sure you close the drive
cover after you put the disk in.) If you try the V(olumes
activity again, the name of your disk should return to the
list. This time, however, the number just to the left of it
is different. If your computer has two disk drives, that
number is probably 5. Now return your system disk to its
original drive in preparation for the next operation.

Each p-System volume has a number associated with it
in addition to a name. This is a device number. In the
on-line volumes list, the device number is listed just before
the corresponding volume name. Device numbers 4 and 5
represent the first two disk drives available with a
p-System.

There are two categories of p-System volumes.
Diskettes are in one category: storage volumes. Each
storage volume (such as SYSTEM: in the list above) is
identified in an on-line volumes list with a "#" and a
number in brackets (320 in this case). This number
indicates the total size of the volume in blocks. Each
block holds 512 characters. (The fact that storage volumes
are made up of blocks leads to the use of "blocked volume"
as a synonym for "storage volume.” The "blocked volume"
terminology is still used in many p-System documents and
programs.)

The key characteristic of storage volumes is that they
can store information on a long-term basis. Each storage

30 Managing Files and Running Programs Chap. 1

volume has its own private name, which is part of the
stored information it contains. It is this private name that
shows up on the on-line volumes list.

The second category of volumes is communication
volumes. These volumes have no storage capability, but
simply serve as channels for information. We deal further
with communication volumes in a later section. For now,
we concentrate on storage volumes. Sometimes we skip the
"storage" and just use "volumes,” or get very concrete and
use "diskettes."

1.6 DIRECTORIES AND FILES

Information on a p-System volume is divided into files, and
a directory keeps track of the name of each file, the
date on which it was created, and various other
housekeeping information, including the file's size and
location on the volume.

The L(ist directory activity (abbreviated "L(dir" on the
Filer menu) can be used to find out what files are on a
particular volume.

Invoke the L(ist directory activity now by typing L.
You are immediately asked to enter the name of the volume
for which you want a directory listing. Ordinarily you
enter a volume name (including a colon) in response to
this prompt. You can look at the default volume,
however, by simply entering : IretJ.

List directory of what volume? [[ret!
,

The current default volume is your system disk. This
will always be the case, unless you explicitly select a
different default volume (by using one of the Filer
activities described in Chapter 6, for instance). A
directory listing is produced as a response to your
request. It is shown on the next page.

Sec, 1.6 Directories and Files 31

Filer: G(et» S(ave» W(hat» N(ew# L(dlr» R(em» C(hr»g# T(rans» D<a+e#? [3
SYSTEM:
SYSTEM.PASCAL 125 13-Jun-82
SYSTEM.FILER 37 13-Jun-82
SYSTEM.Ml SCINFO 1 30-May-82
SYSTEM.INTERP 28 8-Apr-82
SYSTEM.ED I TOR 47 1-Apr-82
SYSTEM.LIBRARY 29 5-JuJ-82
6/6 f11es<Ilsted/ln-dlr># 273 blocks used# 47 unused# 47 In largest

In this example directory listing, the name of the
system disk is SYSTEM:. Your system volume name may be
something else, and other details of your display may be
different from those shown.

A directory listing shows, for each file on the volume,
its name, its size (in 512-character blocks), and the
calendar date on which the file was created or last
modified.

Look at the top line of your display. If it contains the
phrase ”Type space to continue”, then the number of files
on the volume is greater than the number of lines available
on your screen. In this case, you can press [[space]]
(several times, if necessary) until you don't get the ”Type
space to continue” message as the top line.

Whenever the p-System lists the directory of a volume
containing a large number of files, it displays a full screen
of files at a time. For each batch, you are prompted to
”type space” to continue to the next batch. If you arenTt
interested in any more batches, you can type descll to
cancel the listing process.

1,7 RUNNING PROGRAMS

Now that you have had a basic exposure to the concept of
files, itfs time to try running programs. If youTre in the
Filer menu, use the Q(uit activity to return to the
Command menu.

You have already run one program during the exercises
of this chapter—the Filer. The Filer is stored in the file

32 Managing Files and Running Programs Chap, 1

SYSTEM.FILER, and the p-System provides a shorthand way
to invoke it: you just type F in the Command menu.

For most programs, however, the invocation process is
slightly more complicated. The main reason is that there
are so many possible programs you might want to use that
it is impossible to assign a single letter code in the
Command menu for each one. Instead, the Command menu
provides an X(ecute activity which allows you to enter the
name of any program that you want to use.

It is easy to get confused between the X(ecute activity
and the R(un activity, since we often use running as a
synonym for executing when dealing with programs. (See,
for example, the title of this section!)

In the p-System Command menu, however, there is a
subtle but important distinction between these two
activities. R(un is only used when youfre developing new
programs. R(un is described in Chapter 3; you shouldnTt
need it until then. (If you don*t ever do program
development with the p-System, you may never use R(un!)

Go ahead and invoke the X(ecute activity now. As you
may recall from the early part of this chapter, the X(ecute
activity is intended to be used with program files that have
names that end in ".CODE”. In fact, X(ecute is so sure
that you will be invoking code files, that it adds ".CODE"
to any name you provide in response to the data entry
prompt.

What happens if you try to execute a file that doesnTt
have ".CODE" at the end of its name? The following
screens show you what happens. Go ahead and try it,
yourself.

Execute what ffle? system.fI ter Eretl

Command: E(dft, R(un» FUle, C(omp# LUnk, X(ecute# A(ssem, D(ebug>? C]
Illegal file name system.fIler.CODE

See. 1.7 Running Programs 33

After the suffix is added, the file name is 17
characters long. The p-System limits file names to 15
characters in length. Therefore the file name is illegal.

In a later section of this chapter, we show you how to
create a file that does end with the usual suffix (".CODE").
In order to execute the file SYSTEM.FILER right now,
however, we need some way to disable the automatic
addition of the suffix. Try invoking X(ecute again, and
putting a period after SYSTEM.FILER:

<ecu1 e what fife? system,filer. (tret!

Success! The Filer is invoked and displays its familiar
menu. When you need to execute a program file that
doesn!t end with the .CODE suffix, you can respond to the
X(ecute prompt with the file name, followed by a period.
You may never need this fact again, but it sure was handy
here.

Why did the p-System look on your system volume for
the SYSTEM.FILER file? Because it is the default volume.
The ":" response you used earlier with the L(ist directory
activity referred to the default volume as well. In both
cases, the default volume was the system volume.

You can also enter an explicit volume name in
connection with a file name. Q(uit the Filer and invoke
X(ecute again. This time, put the name of your system
volume in front of the program file name. (Your system
volume’s name was listed at the top of the directory listing
you produced in the previous section. Return to the Filer
and refresh your memory, if necessary.) Here’s how your
screen might look:

Execute what file?

As soon as the Filer menu appears, Q(uit to return to
the Command menu.

34 Managing Files and Running Programs Chap. 1

The default volume is also known as the prefix volume,
since the p-System puts its name in front of a file name to
make a complete file specification. Thus, even when you
entered simply SYSTEM.FILER above, the p-System acted as
though you had explicitly designated the system volume.

You can find out what the current default volume is by
invoking the V(olumes activity and looking for the TTPrefix=Tt
line on the resulting display. Look back to the on-line
volumes list at the beginning of Section 1.5, for an
example.

A volume can also be designated by the number of the
device in which it is mounted. In the on-line volumes list
you did earlier, your system disk appeared as device #4.
Therefore the following response to the X(ecute prompt is
equivalent to the two you just tried:

•VS

Execute what file? #4: system, f I ier. (Eretl
mh

To summarize, when responding to a prompt that
requests a file name (in X(ecute or other activities) you
can:

o indicate the volume by entering the number of the
device in which the volume is mounted (e.g.,
#4:SYSTEM.FILER.), or

o enter the name of the volume name explicitly (e.g.,
SYSTEM:SYSTEM,FILER.), or finally,

o omit the volume designation altogether, as long as you
intend to refer to the default volume.

Now that you know how to invoke programs, you also
need to know how to stop them. Most of the time, of
course, you should simply use the orderly exit procedure
that is built into the program (for example, the Q(uit
activity in the Filer menu). Sometimes, however, you
simply must leave a program without going through the
normal exit procedure. One reason, for instance, is if a
program is clearly out of control (yes, sometimes that
happens!).

Sec, 1.7 Running Programs 35

The Cbreakl key addresses this need. To experiment
with it, use any of the ways you know to enter the Filer
and then hit Cbreakl. (Check the inside front cover if you
don't remember how to produce Cbreakl.) On some kinds of
computers, you need to type a character (say, Cspacel)
after hitting Cbreakl to make sure that the Cbreakl is
accepted by the p-System.

When the Cbreakl takes effect, the bell on your
computer sounds, and a message appears on the bottom line
of your screen:

Filer: G(e+» S(ave» W<ha+, NCew, Kdfr, R(em, C<hng, TCrans, D(ate»? []

Program Interrupted by user—Seg PASCALIO P#18 0#306 <space> continues

This is called an execution error message. It means
that something has caused the p-System to halt the program
that was executing. In this case, the cause was your
typing the Cbreakl key, but other causes that really are
errors are also possible.

The first portion of the error message identifies the
error (,fProgram interrupted by user11, in this case). On
some systems, due to main memory limitations, the textual
error message (such as TIProgram interrupted by user") does
not appear. Instead, an error number ("8", in this case) is
shown. If this happens on your computer, you can check
Appendix B, "Execution Errors," to get the textual message.

36 Managing Files and Running Programs Chap. 1

Appendix B also provides possible reasons and recovery
actions for each of the various types of execution errors.

The error message also provides error coordinates that
indicate where the program was executing when it was
interrupted. If youTre running a program developed by
someone else, you probably canTt do much with those error
coordinates. You should, however, note them down, if you
want the supplier of the program to help you diagnose what
went wrong.

After the error coordinates, the error line indicates
how to go on. Type [[space]] to do that. After some disk
activity the Command menu returns, along with a notice
that the p-System has reinitialized itself (since the
unexpected interruption may have left it in an unhealthy
state):

Command: E(dl+, R(un, FUle, C(omp, L(lnk,
System re-InItialI zed

isem, D(ebug»? []

You should now know enough about running programs in
the p-System to get started on productive personal
computing. As for the other topic of this chapter
(managing files), there are additional aspects to cover.

1.8 BACKING UP YOUR p-SYSTEM DISKETTES

The next section introduces the first of many Filer
activities that can modify disks, not just examine them.
The use of these activities increases the risk that you
might unintentionally damage your p-System disks.
Replacing your copy of the p-System would certainly be
inconvenient, and possibly expensive, as well. Therefore,
take time right now to make an extra (back up) copy of
your p-System disk or disks (if you havenTt already done
so).

The details of making back up copies are somewhat
machine-dependent. Therefore you will deal with this task
during your next visit to the appendices.

Sec, 1,8 Backing Up Your p-System Diskettes 37

One of the operations that you may use during the
back up process is disk formatting. Formatting a disk
involves having the system write some necessary control and
address information on the disk surface, and is (on most
computer types) a necessary step before a new diskette can
be used with any software.

Formatting is done by a utility program. The details of
how you run that program are usually different on each
kind of personal computer. (For some computers, you donft
need to do the formatting operation at all, because you can
get disks that are already formatted.)

In addition to making a copy of your p-System diskettes
in this trip to the appendices, you also need to make an
empty volume for later use. (An "empty" volume contains
no files.) The Z(ero activity in the Filer menu is used to
make empty volumes.

Even though different kinds of personal computers
support different disk capacities, we request that you make
your empty volume 100 blocks in size and give it the name
MYVOL:. This uniformity makes it easier for us to be
specific in the descriptions below.

You should turn now to the appropriate computer-
specific appendix and follow the directions in the section
"Making Back Ups and MYVOL:."

1.9 CHANGING THE CALENDAR DATE

Having just returned from a trip to the appendices, you
should now have an extra copy of your main p-System
diskette, and one other diskette containing an empty
p-System volume. You should be using the new copy of the
p-System diskette that you just made.

One of the first things to do whenever you begin a
session with the p-System is update the calendar date
maintained by the System. During the first session with
the p-System on a particular day, use the D(ate activity in
the Filer menu to tell the system the correct date. Enter

38 Managing Files and Running Programs Chap, 1

that activity now. (You may need to enter the Filer,
first.)

Keeping the date current is important because whenever
you create or modify a file, the current date is stored with
the file name in the volume directory. As you begin to do
more work with the p-System, the dates associated with
files will become very important to you. They can tell
you, for instance, whether a data file stored on a diskette
is the current version of that file, or one that is out-of-
date.

Here is the prompt produced by the D(ate activity:

Date set: <1..31>-<JAN..DEC>-<00..99>
Today Is 1-Jan-83
New date?

This activity does two things. First, it tells you the
p-SystemTs notion of the current calendar date. Second,
this activity allows you to enter a new date if you want
to.

The line "New date?" is a data entry prompt. If you
donTt want to change the date, you can simply press IretU.
The p-System returns to the Filer menu.

If you do want to change the date, read the line that
starts "Date set". The date format is day, month, year,
with two "-" separators:

o The day should be in the range 1 to 31,

o a three character abbreviation for the month should be
used, and

o a two-digit year is expected.

Try entering the current date in the indicated format.
If the structure of your entry is acceptable, the p-System
reports the new date as shown on the next page. If the
System cannot interpret your entry, it reconfirms the old
date.

Sec. 1.9 Changing the Calendar Date 39

Today Is 1-Jan-83
New date? 2-lan-83 IretJ
The date Is 2-Jan-83

When you establish a new date, it is recorded on the
system disk, and remains there until you change the date
again. Until that time, whenever you start up the p-System
with the same system disk, the same date is used.

There is a handy short cut that should simplify your
use of the D(ate activity. The p-System allows you to
enter just the day (if only that has changed) or just the
day and month. Try it! First change just the day, and
then try the day and month. After your experimentation,
be sure to re-establish the correct date.

1.10 MOVING FILES AROUND

Now you’re ready to start using the empty volume that you
made during your last excursion to the appendices. Your
first use of the new volume involves the Transfer activity,
which is the Filer’s principal tool for moving files around.

This section describes only a few of the capabilities of
Transfer. Additional aspects are discussed later in this
chapter and in Chapter 6.

Insert the MYVOL: disk in drive 5. Then invoke the
L(ist directory activity and look at the directory of
MYVOL: (that is, type L MYVOL: Qjretll). After you type
the ”L’’, the L(ist directory prompt appears. When you
respond to that prompt, your screen should look like this:

Flier: G(e+, S(ave* W(hat, N(ew* LCdlr* R(em* C(hng, T(rans, D(a+e,? C 3
MYVOL:
0/0 fIles<lfsted/In-dfr>» 6 blocks used* 94 unused* 94 In largest

Six blocks of the volume are already occupied by the
directory, even though there are no files on the volume.

40 Managing Files and Running Programs Chap, 1

Now invoke the Transfer activity. You are
immediately asked what file you want to transfer:

Transfer what file?

You are going to copy the file SYSTEM.FILER from
your system disk to MY VOL:. Type SYSTEM.FILER [[ret].
The Filer responds with another data entry prompt,
requesting that you specify where you want SYSTEM.FILER
to be put:

Transfer what f J le? SYSTEM.FILER tret31
To where?

When you type MYVOL:FILER.CODE Bret!, some disk
activity occurs; then the Filer reports:

Filer: G(et# S(ave# W(ha+» N(ew» L(dlr# R(em» C(hng# T(rans» D(ate#? C 3
To where? MYVOL:FILER.CODE tret31
SYSTEM: SYSTEM. FILER ~> MYVOL: F l LER. CODE

What youTve done is put a copy of SYSTEM.FILER on
MYVOL:, with a new name: FILER.CODE.

When you choose a name for a new file, be sure it has
fifteen or fewer characters. For program files, the suffix
".CODE” should generally be present, leaving ten characters
for you to choose. ItTs simplest if you stick to alphabetic
letters (A to Z) and digits (0 to 9) in the file names you
create. Chapter 4 defines legal file names in greater
detail and indicates the special characters that are also
valid. This information is summarized on the back inside
cover of this book.

LetTs check the directory of MYVOL: to see how that
has changed. Type L MYVOL: HretJl:

Filer: G(e+» $(ave» W(hat» N(ew# L(dlr# R(em, C(hng» T(rans» D(ate#? C 3
MYVOL:
FILER.CODE 37 13-Jun-82
1/1 fIles<lIsted/ln-dlr>» 43 blocks used# 57 unused# 57 In largest

Sec. 1.10 Moving Files Around 41

If you compare the new FILER.CODE entry in the
directory with the SYSTEM.FILER entry in the directory of
your system volume, you should find that both the size and
the date on the new file match those on the old file.
Transferring a file doesn't change its date (since the
contents are unchanged).

What if you want to move a file to a different volume,
and retain the original file name? You could, of course,
type the same name twice, but the p-System makes life
easier for you by providing a special symbol that you can
use in place of an explicit destination file name when you
simply want to reuse the old name on the new file. The
screen below shows you how to do such an operation, which
results in a file SYSTEM.FILER on MYVOL:

Transfer what file? SYSTEM,FILER Eretl
To where? MYVOL; $ JEre+J
SYSTEM.FILER -> MYVOL:SYSTEM.FILER

When you use "$" in place of a destination file name in
the Transfer activity, the Filer uses the source file name
for the new file. (Note that you must still specify the
destination volume.)

What happens if you choose a destination file name that
conflicts with a file already on the destination volume?
Since there cannot be two files on a volume with the same
name, the Filer asks you to settle the matter. For
example:

what file? SYSTEM.FILER IretJ
? MYVOL: $ IEre+31
I dHRYVOT :^YTTEW7F ILER?

■ - 1 m m s 1

If you answer "Y" for TTYes,n the old version of the
destination file (SYSTEM.FILER in this case) is removed,
and a new copy of the file is transferred to MYVOL:.
Answer "No," and the Transfer operation is canceled. You
can try doing the example Transfer shown above if youTd
like.

42 Managing Files and Running Programs Chap. 1

This kind of Yes/No question is like a menu in that a
single character response is expected, and no [IretH is
necessary. In this menu, however, the options are implicit!

There is one last experiment in this "What can go
wrong with Transfer" sequence. Try transferring
SYSTEM.FILER from your system volume again, but this
time use NEWFILER.CODE as the destination file name.
The two screens below show what happens.

Transfer what file? SYSTEM.FI
To where? MYV0L:NEWF1LER

■ ' / : ■
hmi jpppBjip | | u + < ;

Filer: G(et, S(ave, W(hat, Mew, LCdlr, R(em, C(hng, T(rans, D(a+e,? C]
No room on vol

The Filer indicates that there is no room to store a
third copy of the Filer program on MYVOL:. LetTs check
the directory of MYVOL: to see why that is. Type
h. MYVOL: ffretjj; this screen should appear:

N(ew> L(d!r, R(em, C(hng, T(rans, D ,? [3 Flier: G(et, S(ave, W(hat,
MYVOL:
FILER.CODE 37 13-Jun-82
SYSTEM.FILER 37 13-Jun-82
2/2 f11es<Ilsted/ln-dlr>, 80 blocks used, 20 unused, 20 In largest

The summary line at the end of the directory listing
tells the story. Of the 100 blocks in the volume, only 20
are unused; thatTs certainly not enough room for a 37 block
copy of SYSTEM.FILER.

If you get this "No room on vol" message, you can
often make room on the destination volume by removing any
unnecessary files (an operation which is explained in a later
section).

Sec. 1.11 Text Files and Communication Volumes 43

1.11 TEXT FILES AND COMMUNICATION VOLUMES

So far weTve only dealt with files that contain programs—
the code files whose names usually end in ".CODE”. These
files contain encoded computer instructions and are not
directly readable by ordinary mortals. There is another
variety of files called text files that contain readable
characters. Not surprisingly, the names of these files
generally end in ".TEXT".

To experiment with a text file, you must create your
own. There are many ways to create a text file; here is
one that should prove useful in its own right.

Invoke the L(ist directory activity (by typing L) and
respond to its prompt as follows:

List dir of what volume? MYVOL: , MYVOL:DIRECTORY.TEXT Eretl

After some disk activity, the System returns to the
Filer menu, as usual, but instead of the usual directory
listing on the screen, the phrase "Writing." appears. The
reason is that this expanded version of the L(ist directory
request has caused a textual version of the directory of the
volume MYVOL: to be stored in the file MYVOL:
DIRECTORY.TEXT.

Invoke L(ist directory again, but this time request a
conventional display of the directory of MYVOL:. The
result should look like this:

Filer: G(et, S(ave, W(ha+, N(ew, L(dlr, R(em, C(hng, T(rans, Dtate,? C]
MYVOL:
FILEr!cODE 37 13-Jun-82
SYSTEM.FILER 37 13-Jun-82
DIRECTORY.TEXT 4 2-Jan-83
3/3 fIles<lls+ed/ln-dlr>, 84 blocks used, 16 unused, 16 In largest

A text file has indeed appeared there. That file
contains the directory listing that would ordinarily have
appeared on your screen just a few moments ago. Note
that the date shown for DIRECTORY.TEXT is the current
date that you set earlier in this chapter.

44 Managing Files and Running Programs Chap. 1

You can look at the contents of DIRECTORY.TEXT
using the Transfer activity:

Transfer what file? MYVOL:PI RECTORY.TEXT EretJ
To where? CONSOLE; Eretj

IM

Flier: G(e+, S(ave» W(ha+, N(ew, L(dlr, R(em, C(hng, T<rans, D(a+e,? C]
MYVOL;
FILER.CODE
SYSTEM.FILER
2/2 fl
MYVOL

37
37

13-Jun-82
13-Jun-82

lles<lls+ed/In-dlr>, 80 blocks used* 20 unused, 20 In largest
DIRECTORY.TEXT -> CONSOLE:

For this Transfer operation, the destination was the
console screen rather than a file on a diskette. Just as
with previous Transfers, the p-System reported the source
and destination of the operation after it was completed.
This accounts for the last line of text on the screen.

It may surprise you that the file DIRECTORY.TEXT
doesn’t appear on this list. The reason is that when the
directory listing contained in DIRECTORY.TEXT was made,
there was no DIRECTORY.TEXT file! Once the
DIRECTORY.TEXT file has been created by the p-System,
the fact that it represents a directory listing is entirely
forgotten. To the p-System, the file is simply a collection
of characters. Therefore, there is no attempt to update
the text file when the real directory on MYVOL: is
updated to include the new file.

This was your first use of the communication volume
CONSOLE:. You can use the V(olumes activity to see the
other communication volumes available. (They don’t have
the ”#” marks.)

Filer: G(e+» S(ave» W(ha+» N(ew, L(d!r» R(em» C(hng, T(rans, D(a+e»? [3
Vols on-lIne:

1 CONSOLE:
2 SYSTERM:
4 § SYSTEM: [3203
5 # MYVOL: [1003
6 PRINTER:

Root voI Is - SYSTEM:
Prefix Is - SYSTEM:

Sec. 1.11 Text Files and Communication Volumes 45

One of the standard p-System communication volumes is
PRINTER:. If that is listed on your screen, you probably
have a printer device attached to your computer. If
PRINTER: doesnTt appear in your V(olumes list, it may be
because you don’t have a printer, or possibly because it is
not turned on and readied for operation. On some
computers, PRINTER: may appear on the list even though
the printer is not ready to print. Check your printer for
readiness.

If you do have a printer, and it is ready to be used,
Transfer the file MYVOL:DIRECTORY.TEXT to the volume
PRINTER:.

Your printer should produce a printed copy of the
directory listing you saw earlier. If the Filer waits before
printing anything, it may be because your printer isn’t
ready to print-check the manual for your printer if
necessary. If you can’t get the printer to work, and the
p-System continues to wait, you may have to restart the
entire p-System and not try to use the printer again until
you know how to make it work.

It is often quite useful to have a printed list of the
files on a diskette. As you accumulate a larger collection
of diskettes, it gets harder to remember what is on each
one. A printed directory listing, tucked into the diskette
envelope, can be very helpful. Is there a more direct way
to produce a printed directory listing? Yes, there is: you
could type L MYVOL: ± PRINTER: HretJ.

Just as with storage volumes, you can use the device
number style of referencing communication volumes.
CONSOLE: is equivalent to #1:, while PRINTER: is
equivalent to #6:. If you like, try transferring
DIRECTORY.TEXT to #1:, instead of to CONSOLE:.

Which is the better approach, using the name of a
volume or the corresponding device number? In the case of
communication volumes, it is simply a matter of
convenience. Some people feel more comfortable with the
name, since it is more meaningful. Others are more
concerned about the number of keystrokes they use!

46 Managing Files and Running Programs Chap, 1

In the case of storage volumes, there is an important
difference between these two approaches. When you use
the device number style of volume reference, you refer to
whatever volume is installed in that device. This may or
may not be the one you intended. If you use the volume
name, however, this potential source of confusion and
mistakes is eliminated.

You should use the name style of volume reference (at
least initially).

Now that youTve seen several ways to create new files
on a volume, itTs time to find out how to remove them.

1.12 REMOVING FILES FROM A VOLUME

Just as with the files in an ordinary file drawer, files on a
diskette volume occasionally need to be discarded. A
particular file may contain obsolete information or may
have been created by mistake. Whatever the motivation, it
is important to keep in mind that removing a file from a
storage volume has one important difference from taking a
file folder out of a file drawer and throwing it in the
wastebasket:

Itfs very hard to take the diskette file out of the
wastebasket again if you change your mind!

So, be cautious in your tThousecleaningTT on a diskette.

Invoke the R(emove activity (on the Filer menu) now.
Respond to the resulting prompt as follows:

Remove what file? MYVOL:SYSTEM.FILER EretJ
MYVOL:SYSTEM.FILER —> removed
Update directory? _

Now you have one last chance to change your mind. If
you type "N" (for "No") to this question, the removal
operation is canceled. If you type TTYTT, you indicate your
approval for the removal and the file SYSTEM.F1LER is no
more. Type Y.

Sec, 1.12 Removing Files from a Volume 47

The p-System generally asks for verification when you
request an operation where a mistake could have serious
consequences. This is one of the ways that the System is
designed to help you avoid costly mistakes.

Notice that you are back in the Filer menu. Check the
directory of MYVOL: to see if SYSTEM.FILER has indeed
disappeared. This is the directory listing you should get:

MYVOL:
FILER.CODE 37 13-Jun-82
DIRECTORY.TEXT 4 2-Jan-83
2/2 flles<llsted/ln-dlr># 47 blocks used# 53 unused# 37 In largest

SYSTEM.FILER is indeed gone.

What if you try to delete a file that isn’t there? Try
R MYVOL:SYSTEM.FILER gretj again:

L:SYSTEM.FILER - File not found <source>

The aspects of the Transfer and R(emove activities
that you’ve seen so far are sufficient to do most things
you’ll need to do. However, if you should need to transfer
or remove many files at once, the methods you know could
get a bit tedious. The next section introduces some short¬
cuts for such multi-file operations.

1.13 MULTI-FILE SHORT CUTS

When you want to remove many files from a volume, it is
rather inconvenient to have to repeatedly type ”R",
followed by the name of one of the files and [ret]]. It’s
easy to forget the names of the files you want to discard,
so you may have to get a printed copy of the directory of
the volume, or you may have to invoke the L(ist directory
activity frequently to refresh your memory.

There is a better way! To try it, type R
MYVOL: ? HretJ. You are telling the p-System that you
want to remove files from the volume MYVOL:, but that
you don’t want to go through the tedious process of naming

48 Managing Files and Running Programs Chap. 1

each file you want to delete. Instead, you are requesting
the system to ask you, for each file on the volume,
whether you want to remove that file. The Filer responds:

Remove what file? MYVOL: _? Cretl
Remove MYVOL:DIRECTORY.TEXT?

Now the Filer is waiting for another of those yes or no
answers. Type Y. After repeating this question for
FILER.CODE, the Filer gives you the familiar chance to
change your mind:

Remove what f I le? MYVOL; ? II ret I
Remove MYVOL:DI RECTORY.TEXT? Y
Remove MYVOL .-FILER. CODE? N
Update directory? _

If there are many files on a volume, the system asks
you specifically about the removal of each of them, before
asking the "Update directory?" question. If you answer
"Y" to this question, all the files selected individually for
removal disappear from the volume. Since there is really
no need to delete the DIRECTORY.TEXT file, answer N.

This kind of multi-file capability is available in the
^transfer activity also. It is very useful for making back
up copies of an important group of files. Just as with the
R(emove activity, you are asked about the transfer of each
file on a designated volume. Try this example:

Transfer what file? j? IretlD
To where? MYVOL: $ I ret 31

This response indicates that some of the files from the
default (system) volume are to be transferred to MYVOL:.
Just as with the single file Transfer you did earlier in the
chapter, the special "$" symbol means "don't change the
names of the source files when they are transferred to the
destination volume."

You are now asked about the Transfer of each file on
the system volume. For the purposes of this exercise, you

Sec. 1.13 Multi-file Short Cuts 49

should probably answer ,TYes!t only for the
SYSTEM.MISCINFO file, since there isnTt much room on
MYVOL: and SYSTEM.MISCINFO is very small. Here is the
final directory listing of MYVOL:

• ' ■ ■ -

Flier: G(e+# S(ave» W(hat* N(ew» LCdlr* R(em* C(hng» T(rans» D(ate»? C]
MYVOL:
FILER. CODE 37 13-Jun-82
SYSTEM.MISCINFO 1 13-Jun-82
DIRECTORY.TEXT 4 2-Jan-83
3/3 fIles<lIs+ed/ln-dlr>* 48 blocks used* 52 unused* 36 In largest

The capability of the p-System to support multi-file
operations is much more general than described here. One
property of these multi-file operations that is particularly
useful is the ability to use the special key EescJ to cancel
a series of questions about specific files. The full story is
told in Chapter 6.

The next topic is some further discussion of the
structure of files and volumes.

1.14 DEALING WITH CROWDED VOLUMES

Have you ever tried adding a file folder to a drawer that
is almost full already? Usually you have to compress the
existing files together so that the new one will fit. This
wouldnTt be necessary if it were practical to take the
sheets of paper in the new file folder and slip them in
wherever they would fit. Unfortunately, that would make
it rather difficult to find the information from that folder
when needed.

A similar situation occurs in storage volumes maintained
by the UCSD p-System. The information in a p-System file
must be kept together, too. As a volume is used, and files
are added and removed, they can get spread around on the
volume with unused space between them. Sometimes there
is not enough space available in one place to store a new
file on a volume.

50 Managing Files and Running Programs Chap. 1

The L(ist directory activity indicates, in the summary
line of its output, how much total space is unused on the
volume and the size of the largest single area. Here is the
status of your MY VOL: diskette:

MYVOL:
FILER.CODE 37 13-Jun-82
SYSTEM.Ml SCINFO 1 13-Jun-82
DIRECTORY.TEXT 4 2-Jan~83
3/3 f Hes<llsted/ln-dlr>, 48 blocks used. 52 unused. 36 In largest

In this case, the size of the largest file that can be
placed on MYVOL: is 36 blocks. An attempt to add a
larger file (such as SYSTEM.FILER) to MYVOL: would
result in a "No room on vol" message just like you saw
earlier.

The total unused space, however, is 52 blocks, which is
plenty of room for another copy of the SYSTEM.FILER file.

How can you gather the various unused areas on a
volume into a single large area? The Filer activity K(runch
is designed to do exactly that. When invoked, it first asks
you to designate the volume you want to K(runch. You
respond by designating a volume.

Don’t ever stop the p-System, remove a disk, or turn
off your computer during a K(runch operation. You might
interrupt the operation at an inappropriate time and lose
one or more files from your disk. If by accident you do
interrupt a K(runch operation, refer to Chapter 6, where
the topic of recovering a damaged volume is dealt with in
considerable detail.

Let’s try crunching MYVOL:. Select K(runch, and
respond to the resulting prompt as follows:

Crunch what vol ? MYVOL; I ret II
From the end of the disk, block 100? _

A "Y" answer causes the Filer to gather all the open
space to the end of the disk. During your early use of the
p-System, you should always use this answer. If you get

Sec. 1.14 Dealing with Crowded Volumes 51

curious about the implications of a "No," check the
description of K(runch in Chapter 6.

The Filer gathers the open space by moving files so
that they are adjacent. As each file is moved, that action
is reported to the screen. A final message indicates
completion of the K(runch activity:

Flier: G(e+# S(ave# W(hat» N(ew# L(dlr# R(em» C(hng» T(rans# D(ate»? C]
Moving forward DIRECTORY.TEXT
MYVOL: crunched

A L(ist directory shows that the K(runch achieved the
intended purpose. All the unused space is collected in one
area:

MYVOL:
FILER.CODE 37 13-Jun-82
SYSTEM.Ml SCINFO 1 13-Jun-82
DIRECTORY.TEXT 4 2-Jan-83
3/3 fIles<llsted/ln-dlr>» 48 blocks used# 52 unused# 52 In largest

What if there still isn’t enough room on a volume even
after K(runching? The obvious solution is to remove some
files (making sure, of course, that you can do without them
first!).

One drastic way of removing all the files on a volume
is using the Z(ero activity. You’re going to need (in the
following chapters) a volume bigger than the artificially
small 100 blocks that MYVOL: contains. At least 250
blocks are needed. Invoke the Z(ero activity and follow
the prompt/response sequence on the next page. In the
response where "250" is shown, you can enter the actual
size of an appropriate storage volume on your computer if
you know that size. It should be recorded on the inside
front cover, along with other p-System details for your
computer.

52 Managing Files and Running Programs Chap. 1

Zero dir of what vol? MYVOL: lEretl
Destroy MYVOL: ? Y
DuplIcate dir ? Y
Are there 100 blks on the disk
blocks on the disk ? 250
New vol name ? MYVOL
MYVOL: correct ? Y
MYVOL: zeroed

? (y/n) N
JEretl

Ire+1

iMli

iiitS
hm ..

This sequence has established an empty volume called
MYVOL: with a size of 250 blocks (or whatever size you
entered, above). We defer the detailed description of the
Z(ero activity to Chapter 6.

There is one more preparation we need to make for
following chapters. We need a text file on your new
MYVOL:. A simple invocation of L(ist directory does the
job:

List directory of what volume? j_ MYVOL: DI RECTORY. TEXT (Eretl
Writing...

You now have a text file on MYVOL: containing the
directory of the system volume.

Another Filer activity that is useful with crowded
volumes is E(xtended directory list. It shows you where
each of the unused areas on a volume is and also provides
additional information about the files on the volume. We
leave the details of this activity to Chapter 6.

1.15 DEALING WITH DAMAGED VOLUMES

One other housekeeping aspect of the use of disks needs to
be mentioned here. Just as a phonograph record can
become warped or scratched, it is possible for areas of a
disk to become unusable for storing or retrieving
information. This may result from a physical deformity, a
speck of dust, or some other cause. Blocks on the disk
that are not usable by the p-System are called bad blocks.
If the p-System has trouble doing some operation, such as a
Transfer, it may be due to bad blocks on a disk.

Sec. 1.15 Dealing with Damaged Volumes 53

In Chapter 6, the B(ad block scan and X(amine
activities of the Filer menu are described. These activities
are useful in diagnosing and correcting the existence of bad
blocks on a p-System volume.

Another way the p-System helps you recover from disk
failures is the duplicate directory facility. When you
Z(ero a disk, you can choose to have the p-System maintain
an extra copy of your directory information on the disk. If
one copy gets damaged, the other copy serves as a back up
source of information about the files on your volume.
When, in the previous section, you answered nYTt to the
question "Duplicate dir?", you were establishing a duplicate
directory on MYVOL:. In Chapter 6, we describe the
p-System tools that are available to work with duplicate
directories.

This concludes our discussion for this chapter about
managing p-System files. We also have dealt with the
running of programs. The last topic of this chapter is how
to acquire the p-System programs you want to use.

1.16 ACQUIRING p-SYSTEM APPLICATION PROGRAMS

If youTve ever browsed among the offerings of a personal
computer software outlet, you may have noticed that each
software package in the inventory is usually specifically
intended for one brand (and often one particular model!) of
personal computer. Even if a particular product is offered
for more than one computer, there’s usually a separate
version for each computer variety.

There are two reasons for this. First, most personal
computer software is not very portable. That is, it cannot
handle the differences between the physical computer
hardware used in different brands of computers. The
result: software must be specifically tailored to a
particular computer and once this tailoring is done, it won’t
run on other kinds of computers.

Second, there are incompatibilities between personal
computer brands in the way information (including
application programs) is recorded on diskettes. Even when

54 Managing Files and Running Programs Chap. 1

two dissimilar computers both use the same size diskette
(often the 5-1/4 inch size), there may still be differences in
the details of information recording. The result: even
when software portability is achieved, these mismatches in
distribution media make it impossible for a single software
package to be used on many different personal computers.

The p-System addresses both these problems (lack of
software portability and distribution medium mismatches) to
a greater degree than any other widely available software
environment for personal computers.

First, p-System application programs can be completely
portable to any personal computer that has the p-System
installed.

Second, the distribution medium mismatches are
addressed by the use of a standard diskette format that can
be used by most personal computers that have 5-1/4 inch
diskette drives.

The p-System Ts portability and this standard diskette
format are combined to produce the Universal Medium for
personal computer software distribution. When application
software is recorded on a Universal Medium diskette, it can
be used by owners of almost any kind of personal computer
that uses 5-1/4 inch diskettes. (If you have only 8 inch or
3-1/2 inch diskettes on your computer, you canTt take
direct advantage of the Universal Medium.)

You may wonder why all this is important to you.
After all, if you only have one kind of computer, why
should it matter whether a software package can run on
other computers? What if the only kind of computer you
care about is yours?

One answer is that you should benefit if an application
developer does not have to adapt an application specifically
for your brand of computer, since the cost of development
and distribution can be substantially reduced. This cost
reduction should (we hope) be passed on to you in a lower
price for the product, or perhaps in greater capabilities.
Without the simplifications of the p-SystemTs portability, the

Sec, 1.16 Acquiring p-System Application Programs 55

developer may choose not to make the product available at
all for your computer!

In addition, there may be benefits of portability that
havenTt yet occurred to you. For one thing, you may want
to replace your current computer by a different one
eventually. WouldnTt it be pleasant to continue to use the
same software on the new machine?

If you use a personal computer in your work, are there
other people in your organization that also use personal
computers, but of different kinds? The portability of the
p-System offers the hope that productive sharing of
software can occur (both for software that is developed by
your organization and for software that is acquired from
others).

But you canTt begin to reap all these benefits unless
you find application programs that meet your needs. You
can start looking in the usual places like retail computer
stores and personal computing magazines. If those sources
don’t turn up the application programs you need, check the
the UCSD p-System Applications Catalog or the USUS
Vendor Catalog mentioned in Chapter 1.

Once you have decided to acquire a particular
application, you need to be aware that the p-System’s
portability is not completely automatic: application
developers must still take care in their programs to make
sure that portability is not compromised. Similar care is
needed in documentation and packaging of an application if
it is to realize the portability that is possible in the
p-System.

You should tell the potential supplier of your
application what kind of personal computer you use and
something of its configuration (for instance, how much main
memory it has). You should also mention the version of the
p-System that you use. If the application depends on
specific features of a particular version, itfs important to
know if you have that version. You should also check on
the application’s use of ’’real numbers.” Section 1.18
discusses the issues in this area.

56 Managing Files and Running Programs Chap. 1

After this discussion about the hardware and software
that you have, the conversation can turn to the application
you want to acquire. In addition to the natural discussion
about what the application can do for you, you may want
to raise the following questions:

o Is the software offered on the Universal Medium? If
your computer can use the Medium, then a TtyesTT is
good news indeed because you should be able to acquire
the application and put it to immediate use.

Even if you can't directly use Universal Medium
applications, a nyesTT on this question is good news,
since this generally means that the developer has made
sure that no dependencies on specific computers are
built in to the product. The remaining problem is to
get the application recorded on a medium that your
computer can access.

o Is the software specifically offered for your brand and
model of computer? If the answer is "yes," the
developer has probably tested the software directly on
your kind of computer and made sure that any
peculiarities of that computer are dealt with by the
software and the documentation that accompanies it.

LetTs say that the answers to these questions indicate
that you can acquire the application you want on the
Universal Medium. The next question is "Does your
computer support the Universal Medium, and if so, how do
you use it?"

1.17 USING THE UNIVERSAL MEDIUM

At the time of this writing, the Universal Medium is a
relatively new concept. Some p-System vendors are already
supporting it, but widespread standards (on how the Medium
can and should be used) have not yet emerged. As a
result, this section provides general guidelines, rather than
specific "folio w-along" directions.

The first requirement for accessing the Universal
Medium with your computer is that you use 5-1/4 inch
diskettes.

Sec. 1.17 Using the Universal Medium 57

If you meet this first requirement, there are three
possibilities. The convenience with which you can use the
Universal Medium is determined by which of these three
possibilities apply to you.

The first possibility is that the Universal Medium
diskette format is already supported on your p-System
installation as the standard format for diskettes, or perhaps
one of the standard formats. If your computer is in this
category, you’re in luck! You can access Universal Medium
diskettes just like you do the diskettes you already have.
No special access mechanisms are necessary.

The second possibility is that you need to use an
Adaptor program to access the Univeral Medium with your
computer.

To use an Adaptor program, you invoke it with the
X(ecute activity and then, under the program’s direction,
insert a Universal Medium diskette in one drive of your
computer, and an empty disk suitable for routine use with
your computer in a second drive. The Adaptor program
then copies the information from the Universal diskette
onto your diskette in your "native” format. As soon as this
copying operation is complete, you can make use of the
program on the native format diskette, just as you would
any other program that you acquire.

The final possibility is that the standard Universal
Medium format cannot be accessed at all from your
computer, even with the aid of an Adaptor utility program.
There is still hope, however, because the alternate side of
a Universal Medium diskette is reserved for "foreign"
formats that are fundamentally incompatible with the
standard Universal side. The only problem is that there is
room for only one foreign format. Therefore, the
application supplier has to choose from among the
possibilities. If the supplier chooses to put your format on
the second side, you’re in luck! If not, contact the
supplier.

All of the computers that we treat specifically in this
book can access the Universal Medium format as a native

58 Managing Files and Running Programs Chap, 1

format. If you have some other computer, you may have
already determined the kind of Universal Medium access you
have, and recorded it on the inside front cover. Otherwise,
consult your p-System documentation or your p-System
supplier.

1.18 APPLICATIONS THAT USE REAL NUMBERS

There is one other issue you should discuss with the
potential supplier of an application program. You should
ask whether the program youTre interested in uses real
numbers. In computer jargon, real numbers are those that
can have fractional parts, such as "4.531" or "6.92". In the
same vein, an integer number cannot have a fractional
part. Examples of integer numbers are "58" and "21237".

The simplest situation is if the program you want to
use doesnTt use real numbers. Then you donTt need to
worry about the issue at all.

If the program does use real numbers, then you need to
be aware that the p-System can support two sizes of real
numbers. However, only one size is supported by a
particular p-System configuration. You have to make sure
that the size assumed by the program you want to use is
the same as the size for which your p-System is configured.
Some p-System suppliers allow7 you to choose either size;
other suppliers make the choice for you. The computer-
specific appendices to this book (or comparable information
from your p-System supplier) should tell you what freedom
you have in this area.

The two sizes supported are known as "two-word" and
"four-word." A p-System "word" has room to store two
characters, or bytes. Real numbers either occupy two of
these words, or four of them. The size difference
determines how big the real numbers can be, and how
precisely they can be represented. For instance, with the
two-word format, a program usually can’t distinguish
numbers that have the first six or more digits in common.
So the dollar figure $5,345,789.20 would be treated as
essentially the same as the dollar figure $5,345,786.73. For
some kinds of programs, this limitation poses no problems.

Sec. 1.18 Applications That Use Real Numbers 59

For other kinds of programs (in the accounting area, for
instance) the four-word format is highly preferable, since as
many as 15 digits can be distinguished. The basic question
is whether your preference is for precision or compactness
in the real numbers processed by your applications.

Some application suppliers provide programs in both
sizes so you can make your own choices.

EDITING TEXT

v

2.1 INTRODUCTION

This chapter shows you how to use the p-System to
manipulate text files like the DIRECTORY.TEXT file that
you created in Chapter 1.

Of course the text that you deal with will be much
more interesting and useful than the simple list of file
names in DIRECTORY.TEXT. Business plans for a new
company, human readable forms of computer programs, or
even a PhD thesis, a letter to your Mom, or a book report,
—all these can be stored as text files on p-System volumes.

Why should you work with these kinds of text using
your computer and the p-System rather than manual methods
involving pencil and paper or typewriter? If your interest
is in developing p-System programs, you have no real
alternative, since the p-System must be able to process
your program, and it canTt do that unless the program is
stored in a file.

60

Sec. 2.1 Introduction 61

For other kinds of text, the main reason for using the
p-System is convenience. The p-System includes an Editor
program that allows you to create a text file and then
later review and modify it very easily. When you are
satisfied with the contents of the file, you can print it out
on paper with just a few commands to the p-System.
Alternatively, you can use a text formatter program to do
the printing, just as we did with this book. If changes are
needed, you can use the Editor again and then print the
revised text. This approach is a big improvement over
typing all that text again on a typewriter (especially since
youTre likely to produce a new set of typographic errors in
the process)!

We’ve talked enough about the joys of text editing.
It’s time to do some! If you arenTt already looking at the
Command menu on your computer screen, do whatever you
must, to get to that state. (If you need to start up the
p-System again, refer back to the appropriate computer-
specific appendix, or to your p-System documentation.)

To follow along in this chapter, you need to have the
Screen-oriented Editor. To see if you have it, type E to
invoke the E(dit activity from the Command menu. YouTre
in luck (and you should go on to the next section), if your
screen ends up looking like this:

>Ed!+:
No workfile is present. File? (<re+

If, instead, your screen has the message "Cannot find
SYSTEM.EDITOR", then you need to find the file containing
the Editor and use the Transfer activity in the Filer to
copy the editor file onto your MYVOL: volume. The
section "Editor Set Up Details" in the appropriate
computer-specific appendix provides some guidance. Once
you have installed the Editor as SYSTEM.EDITOR on
MYVOL:, invoke it by typing E in the Command menu.
When you see the screen above, go on to the next section.

Some runtime configurations of the p-System don’t have
the Editor at all. If this is your situation, you can still

62 Editing Text Chap, 2

read this chapter and see how useful the Editor would be if
you had it!

2.2 LOOKING AT AN EXISTING TEXT FILE

Your first experience with the Editor involves a text file
that already exists. (You guessed it: DIRECTORY.TEXT!)
Later you will create a text file from scratch.

After the Editor program is started up, your screen
should look like this:

>Edit:
No workfIle Is t. File? (<re+> for no file)

With the ’’File?” question, the Editor is requesting that
you designate the file you want to work on. Since this is
a data entry prompt, and since the file you’re going to edit
is DIRECTORY.TEXT, enter MYVOL:DIRECTOR_Y gretJI.
Only text files can be edited, so the ’’.TEXT” suffix is
omitted.

Now the Editor goes to the MYVOL: diskette and gets
the DIRECTORY.TEXT file (or whatever file you designate
in response to the ’’File?” prompt). The file is copied
from the disk into the Editor’s workspace in main memory
so that, you can work with it. DIRECTORY.TEXT is still
out on the disk; a copy of it is made in main memory.
When the copying is done, a screen something like the
following appears:

>Edi + : A(djus+ C(opy D(el FUnd l(nsert J(ump K(oI MCargln P(age ? [3
SYSTEM:
SYSTEM.PASCAL 125 13-Jun-82
SYSTEM.FILER 37 13-Jun-82
SYSTEM.MISCINFO 1 30-May-82
SYSTEM.INTERP 28 8-Apr-82
SYSTEM.ED I TOR 47 1-Apr-82
SYSTEM.LIBRARY 29 5-Jul-82
6/6 flles<lls+ed/In-dir>* 273 blocks used* 47 unused* 47 In largest

First notice the familiar menu structure on the top line
of the screen. This is the Edit menu. Later, we explore
the activities on this menu.

Sec. 2.2 Looking at an Existing Text File 63

Also notice that the contents of the file
DIRECTORY.TEXT are displayed on the screen below the
menu. (The details shown on your screen reflect your
system volume, and may differ from those shown above.)

This editor is called TTscreen-orientedtT because it uses
the display screen of your computer as a window into the
workspace. When you want to look at or modify a portion
of a workspace, you move the window so that you can see
the portion of interest, and then use the activities on the
prompt line to make changes (or whatever). Figure 2.1
shows this concept.

LOOK THROUGH THE "WINDOW" OF

THE SCREEN AT THE TEXT

YOU’RE WORKING WITH.
T

H ALL THE TEXT IN A WORKSPACE USUALLY
E

W

CAN’T FIT ON THE SCREEN AT ONE TIME.

THE EDITOR DISPLAYS AS MUCH TEXT AS

i IT CAN IN THE WINDOW OF THE SCREEN.

N THE POSITION OF THE WINDOW IN THE

D

O
WORKSPACE IS DETERMINED BY THE

POSITION OF THF CURSOR <4
W

THE WINDOW ALWAYS CONTAINS

THE CURSOR AND YOU CAN MOVE

THE WINDOW IN THE WORKSPACE BY

THE CURSOR

Figure 2.1

The window only highlights a general area of the workspace
for attention. How can you point to a specific letter or
word within the window? The answer involves the cursor,
which we talked about earlier in connection with data entry
prompts. You should see it right now on the first
character of the line just below the menu on your screen.
(A cursor is also shown in Figure 2.1.) You can think of
the cursor as a pointer into the workspace youTre editing.
When you want to do some editing action, such as removing
a word, your first step is to move the cursor to point to
the word. As you move the cursor in the workspace, the
Editor generally moves the window so that you can see the
area where the cursor is pointing.

64 Editing Text Chap. 2

There are special keys which you can use to move the
cursor. Some of these you’ve used already, but they have
a slightly different function when used for cursor
movement.

The [[spacell bar can be used to move horizontally on a
line. Each [[space]] moves the cursor to the right by one
position. If you space past the end of a line, the cursor
moves to the beginning of the next line. Go ahead and
[[spacell past the first line of the directory information in
your workspace.

You can move the cursor to the left with Ebsl. Notice
that when you use [[bsl for this purpose, characters aren’t
erased as you backspace over them; only cursor movement
occurs. What happens if you backspace through the
beginning of a line? Try it! As you may have expected,
you end up at the end of the previous line.

Another familiar key, [[ret]], moves the cursor towards
the end of the workspace like [[space]], but by leaps of a
line at a time, rather than small steps of a character at a
time. Each time you type [[ret]], the cursor moves to the
beginning of the following line.

The arrow keys, which you haven’t used before in this
book, also move the cursor. The [[left]] arrow key has the
same effect on the cursor as described above for Ibsl. The
[[right]] arrow key acts like the [[space]].

You can think of the characters in your workspace as
beads on a string. Lines of text are separated from each
other by line separator characters. These separators are
also like beads on the string, but they are invisible on the
screen. Consider, for instance, this simple workspace:

>EdJ+: A(djus+ C(opy D(el F(ind ICnsert J(ump K(oI M(argln P(age ? [3
LINE1

AND
LINE TWO

Figure 2.2 shows the characters of this workspace as
’’beads on a string.” The normally invisible line separator

See. 2.2 Looking at an Existing Text File 65

characters are shown, and the position of the cursor is
indicated by an upward pointing arrow designating the nATt
in the second line. This corresponds to the position of the
cursor in the workspace above.

EF-EF—Eh--E>—Eh-EF

IBS]]

[ILEFTJ

[[space]]
[[right]]

ED-IZ1-ED-IH-!
t-*-

[[RET]]

r~

Figure 2.2

The cursor movements that would result from pressing
any of five special keys (Hbsl, DeftjD, [[space!, [[right!,
CretB) are shown.

The [[up! and [[down! arrow keys move the cursor, also,
but they cause movement vertically, rather than along the
imaginary string of Figure 2.2.

If you want to exercise your understanding of the
cursor movement commands, try traversing a square on the
screen using the cursor. It should be easy. Imagine how
much more tedious the job would be if you couldnTt use the
vertical arrow keys.

66 Editing Text Chap. 2

You’ve probably seen enough of DIRECTORY.TEXT by
now. You can leave the Editor by invoking the Q(uit
activity. When you type Q, you should see the following
screen:

>Qul+:
IKpda+e the workfile and leave
E(xi+ without updating
FUeturn to the editor without updating
W(rlte to a file name and return

ii

In this chapter we are only concerned with the last
three of these options. The R(eturn activity is useful if
you press ”Q” by mistake. It puts you right back in the
Editor as if you hadn’t typed ”Q” at all. Try typing R Q,
to exercise the R(eturn item and get back to the Quit
menu.

The E(xit activity is used when you haven’t modified
the workspace, implying that the file stored on disk does
not need to be updated. For instance, you may have been
simply inspecting the text. E(xit is also used if you have
made modifications to the workspace but want to discard
them and leave the file on disk (DIRECTORY.TEXT in this
case) as it was before you entered the Editor. Go ahead
and invoke E(xit. You should soon be out of the Editor
and back in the Command menu. Since the next topic is
the use of the Editor to create a new file, you should
immediately reinvoke the E(dit activity.

2.3 CREATING A NEW TEXT FILE

This time when the prompt ”No workfile present. File?”
appears, you should simply press IretJ, indicating that there
is no existing file you want to edit, since you are going to
build one yourself. Now the main edit menu appears, but
the screen below it is empty. You’re looking through the
window of the screen at an empty workspace.

I(nsert is the activity that allows you to enter text.
Type l You could not see a clod 7 and the screen should
look like this:

Sec. 2.3 Creating a New Text File 67

Insert: Text {<bs> a char* a line} t<etx> accepts* <esc> escapes]
You could not see a clod*

You are now inserting text. The cursor is immediately
after the comma, indicating where the next character you
type goes. What if you wanted "cloud", rather than "clod"?
Just as with data entry prompts, you can use [[bs]J to
correct errors. Type HbsJ EbsJ ud , and the error should
be fixed.

The Insert prompt is somewhat different from other
prompts youTve seen. In this activity, you can type any
arbitrary text that you want to add to the workspace—the
word "text" in the prompt is intended to remind you of
that. You can also use ttbsl to delete a character you just
typed—"<bs> a char" is intended to remind you of that.
Furthermore, you can delete an entire line, but we leave
the description of that possibility to Chapter 5. The last
two special key possibilities in the prompt are discussed
below.

Now enter the remainder of the following small excerpt
from Lewis Carroll’s poem "The Walrus and the Carpenter"
in Through the Looking Glass. Use Bret! to end each
line. Here is the screen after you press CretB on the last
line:

>Edlt: A<djus+ C(opy D(el FCInd Knsert J(ump K(ol M(argln P(age ? []
You could not see a cloud* because Hretl
No cloud was In the sky; I ret 3
No birds were flying overhead-- tret!
There were no birds to fly. Iret3

Now you have two alternatives. First, you could
conclude that this little bit of poetry was not what you
wanted to insert at all. In this case, typing the ffescll key
would discard the text you entered and you would be back
in the Edit menu with an empty screen.

The second possibility is to complete the insertion by
typing the detxll key. (If you need to, check the inside
front cover for the details on typing the CetxB and ffescB

68 Editing Text Chap, 2

keys on your system.) Go ahead with JLetxJ, and you return
to the Edit menu.

Imagine youTre Lewis Carroll for a moment. YouTre not
quite happy with these four lines as they stand: they start
out rather abruptly; another couple of lines at the
beginning could help considerably. Move the cursor to the
beginning of the first line (HupMupHlIupMupI should do it)
and type L The Editor doesnTt know the size of the
insertion you want to make, so it first opens up as much
space as it can on the line where the cursor is:

Insert: Text {<bs> a char, a

No cloud was In the sky:
No birds were flying overhead—
There were no birds to fly.

line} [<etx> accepts, <esc> escapes]
You could not see a cloud, because

HH mu

You can now enter new material. One possible new
line is nTThe time has come1, the Walrus said,". Enter that
and see how it looks. Notice that the new line goes
before the character on which the cursor appeared ("Y").
The cursor really points between characters. Since that is
impossible to show accurately on most computer display
screens, the • character immediately after the real position
of the cursor is highlighted. When an insertion is made in
the workspace, the characters ("beads") after the cursor are
moved down to make room for the inserted material.
Figure 2.3 shows some character beads on a string, before,
during, and after an insertion. For each case, the location
of the visible cursor is shown by an arrow.

Sec. 2.3 Creating a New Text File 69

BEFORE 1 (NSERT —S-O-0-0-
t

DURING INSERT —43—□—Eh
t

■O-

AFTER IETXJ —TZ]—CZ]—El—IZ]—Eh-
t

Figure 2.3

Even though you’re not Lewis Carroll, it should be clear
after you’ve entered this new line that it doesn’t quite
work. Here’s your chance to use the I esc IS key to discard
an insertion. When you type ffescj, the offending line
vanishes, and you’re back with the original four lines.

Maybe the best idea is to use the words that Lewis
Carroll actually wrote. Type 3_ to invoke I(nsert; then enter
the two new lines that are shown at the top of this screens

>Edl+: A(djus+ C(opy D(el F(lnd Knsert J(ump K(ol M(argin P(age ? []
The sea was wet as wet could be* Iretl
The sands were dry as dry. I ret 31
You could not see a cloud* because
No cloud was In the sky:
No birds were flying overhead—
There were no birds to fly.

Now press HetxU to accept the insertion. The next
section describes how you can save the results of your
work so far.

70 Editing Text Chap. 2

2.4 SAVING THE WORKSPACE ON DISK

When Lewis Carroll wrote these lines in 1872, he wasnTt
using a personal computer and didn’t have to worry about
power failures or other technical catastrophes. You do.
As a result, it is prudent to stop periodically during a long
editing session and write a copy of your workspace from
main memory onto a disk file. Usually you wouldn’t do this
after only six lines of input, but poetry is hard work, and
it’s time for a break.

To save a copy of your workspace on disk, invoke the
Q(uit activity and its W(rite option. The screen should look
like this:

>Qu!+:
Name of output file (<cr> to return) ->_

When you enter a file name here, you can leave off the
.TEXT suffix just as you did on entry to the Editor.

You need to choose a name for this file. How about
"WALRUS”? To use that name on volume MYVOL:, respond
as follows:

>QuIt•

Name of output file (<cr> to return) ->MYV0L:WALRUS Iretl

The Editor reports the results of the copy-to-disk
operation, including the number of bytes ("characters”) that
were contained in your workspace. The Editor then queries
you on the next step:

>Quit:
Writing..
Your file is 1003 bytes long.
Do you want to E(xit or R(eturn to the Editor?

Type E to E(xit the Editor. We’ll re-enter the Editor
momentarily and copy "WALRUS" into the workspace again
from disk.

Sec. 2.4 Saving the Workspace on Disk 71

Sometimes a Q(uit W(rite operation can go wrong. For
instance, you might pick a file name that had too many
characters or was illegal in some other way. Chapter 5
discusses (in the "Leaving the Editor" section) the possible
problems and what you can do about them.

Now that you know how to insert text, the next step
is learning how to delete text.

2.5 DELETING AND MOVING TEXT

One of the pleasures of using a personal computer to write
poetry is that it Ts easy to experiment with various
arrangements of the lines of a poem. LetTs try some
modifications to our "Walrus and the Carpenter" excerpt.
Let’s exchange the second and the fourth lines. That
probably wonTt be an improvement from an aesthetic point
of view, but it will be an enlightening exercise.

Enter the Editor and respond to the "File?" question
with MYVOL:WALRUS HretJ. After some disk activity, the
immortal lines should reappear below the Edit menu.

There isn’t a specific operation in the Editor for
moving material from one place to another. What you do
instead is delete text from one place and copy it in at the
new location. A special facility called the copy buffer
allows you to avoid retyping the text during this process.

Move the cursor to the beginning of the second line by
typing HretJ. Invoke the D(elete activity by typing D. The
Delete menu appears:

>Dele+e: <> <Moving commands> {<e+x> to
The sea was wet as wet could be.
The sands were dry as dry.
You could not see a cloud, because
No cloud was In the sky:
No birds were flying overhead—
There were no birds to fly.

jelete, <esc> to abort}

The position of the cursor when you enter Delete is
called the anchor. The cursor moving keys, such as
[space]], [bsl, [retB, and the arrow keys, are operational in

72 Editing Text Chap. 2

Delete. Whenever you cause the cursor to move away from
the anchor, text disappears; if you move towards the
anchor, that text reappears. This works on either side of
the anchor. Figure 2.4 shows what happens.

TEXT DISAPPEARS

—0-—0—CD—0—0—0—

TEXT REAPPEARS

Figure 2.4

You can see this behavior in action by typing {[space!
several times. Each [[spacell causes a character to
disappear. Now try a few flbs! keys; for each one, a
character reappears until you reach the anchor. If you
continue, characters start disappearing again.

Since what we really need to do is delete the entire
"sands were dry" line, [[space! back to the anchor. You
could now delete the characters of this line individually
with [[space!, but it is simpler to use [[ret! to do it in one
step. Go ahead and do that.

At any point during Delete, you have the option to
type [[esc! and leave the workspace just as it was when
you invoked D(elete. Alternatively, you can type [[etx! and
cause the deletion to take effect. Now that the line we
wanted to get rid of has disappeared, itTs time to type
[[etx!. The resulting screen shows that you have succeeded:

>EdI+: A(djus+ C(opy D(e! F(fnd l(nser+ J(ump K(ol M(argln P(age ? []
The sea was wet as wet could be*
You could not see a cloud* because
No cloud was In the sky:
No birds were flying overhead—
There were no birds to fly.

There is still the matter of copying the deleted line
into its new location. For that, we make use of the C(opy
activity. The Editor has saved the line you deleted in its
copy buffer. If you now move the cursor to the place you

Sec, 2.5 Deleting and Moving Text 73

want the text to go, the C(opy activity allows you to place
it there. Type EdownJ C; this screen should result:

>Copy: B(uffer F(rom file <esc>
The sea was we+ as wet could be.
You could not see a cloud, because
No cloud was In the sky:
No birds were flying overhead—
There were no birds to fly.

The Copy menu shows two possible choices: fTBTT causes
the contents of the buffer to be inserted where the cursor
was on entrance to C(opy; "F" allows text to be copied in
from another file. Type B. You did it! Now use the same
approach to move the "No cloud was in the sky" line so
that it becomes the second line of the poem. How does it
feel to be an author? (Or at least an editor!)

Text is stored in the copy buffer when any of the
following actions occur:

o When you exit the Delete menu with EetxJ, the
designated text disappears and is saved in the copy
buffer. You just made use of this feature.

o When you exit the Delete menu with EescB, the
designated text is not deleted, but it is stored in the
copy buffer, anyway. This facility can be used to
make a duplicate copy of a section of text.

o When you exit the Insert menu with EetxJ, the inserted
text is stored in the copy buffer, and can be reinserted
elsewhere in the workspace.

When you EescJ from Insert, the copy buffer is cleared.
If youTre using the copy buffer to move some text, be
careful not to invoke Knsert before you have placed the
text in its new position.

We think Lewis Carroll would have enjoyed the concept
of the copy buffer. We can see the sequel: Alice's
Adventures in the Copy Buffer.

If you want to do any further experimentation with
your workspace, do it now. When youTre ready to go on to
other material, there is one more thing you need to know

74 Editing Text Chap. 2

about the Q(uit W(rite activity. When you invoke it this
time, the screen is different from last time:

>Quit:
$ writes to MYVOL:WALRUS.TEXT
Enter output file name (<cr> returns) ->_

This time, the Editor knows that the workspace was
copied from the file MYVOL:WALRUS.TEXT. The Editor
now gives you a shorthand way to write the workspace out
to that file. If you simply type $ [[ret]], you’ll save
eighteen letters of typing and the mistakes you might have
made in the process. Go ahead and do that; then E(xit the
Editor.

A Q(uit W(rite operation on a file replaces an existing
version of that file by a new one containing the workspace.
Therefore you should be sure, when you use Q(uit W(rite,
that you really want to discard the previous version of the
file.

In the next section we create a larger file and explore
some other capabilities of the Editor that are very useful
with larger files.

2.6 SHORT CUTS FOR TEXT CREATION

We are going to create text from scratch again, so enter
the Editor (with E) and type HretJ to the "File?" question.
Invoke the Knsert activity and enter the text shown in this
screen:

>Edft: A(djus+ C(opy D(el F(lnd Knsert J(ump K(ol M(argln P(age ? []
99 bottles of beer on the wall* S>et3
99 bottles of beer; ITretl
If one of those bottles should happen to fall: {Tret3
There1d be 98 bottles of beer on the wall, tret!
I ret 3

Be sure to do an extra EretJ on the last line to insert
an empty line and an letxU to accept the insertion.

Sec. 2.6 Short Cuts for Text Creation 75

As you probably know, there are many verses to this
song—one hundred to be exact! Each one starts with one
less bottle available. We are now going to test your text¬
entering stamina by adding the next ten or so verses to the
one you!ve already entered.

Before you panic and/or rebel, we should tell you that
it wonTt be as hard as it sounds. Using the conveniences
of the Editor simplifies the task dramatically.

If you entered all the text above in a single invocation
of the I(nsert activity, then those lines are stored away
now in the copy buffer.

If you did more than one Insert or a Delete, those
operations modified the copy buffer, so you need to go to
the top line of the text, and type

D HretMretMretMretMretMesc]

to set the copy buffer.

Type C B. The screen should look like this:

>Edl+: A(djus+ C(opy D(el FUnd Knsert J(ump K(ol M(argln P(age ? C 3
99 bottles of beer on the wall#
99 bottles of beer;
If one of those bottles should happen to fall:
There*d be 98 bottles of beer on the wall.

99 bottIes of beer on the wall#
99 bottles of beer;
If one of those bottles should happen to fall:
There*d be 98 bottles of beer on the wall.

Type the same two characters (TTCBM) three more times,
and you have the first five verses (except for little details
like the correct numbers in each).

The next step is to go back and get all the numbers
right. (Don’t worry, there are short-cuts for this task, as
well.)

76 Editing Text Chap, 2

The first need is to get back to the beginning of the
workspace. You could type ttbsl a great many times.
Alternatively, you could type ttupl somewhat fewer times.
Either approach would be rather awkward. In the next
section, we describe some additional facilities in the Editor
for moving the cursor around; these are particularly
applicable (and necessary) when workspaces start to get
large like this one.

2.7 MORE ON CURSOR MOVEMENT

One very useful cursor movement concept is repeat
factors. A repeat factor is a number that you type before
pressing a cursor movement key. If you type T,5Tt, and then
[retl, the Editor acts as if you typed IretJ five separate
times.

If you don’t type an explicit repeat factor before a
cursor movement key, the Editor only performs the cursor
movement once. If you do type a number, it won’t appear
on the screen: you’ll just see the results when the cursor
makes a large leap rather than a small step. The repeat
factor only applies to the very next activity or special key,
and can have any value between 1 and 9,999.

Try it! Experiment with the ttupU and ttdown]] keys,
using various repeat factors. Notice that no matter what
repeat factor you use, you can’t move down past the end
of the workspace or up past the beginning.

There is a special repeat factor, ”/”, which means ”as
many as possible.” When you type ”/” EretB, the Editor
moves the cursor all the way to the end of the workspace.
Similarly, ”/” lupj moves the cursor to the beginning of the
workspace.

There are more direct ways to accomplish these
movements: the J(ump activity allows you to leap directly
to the beginning or end of the workspace with just two
keystrokes. Invoke J(ump now, by typing J. This menu
should appear on the top of your screen:

>JUMP: Beginning E(nd M(arker <esc>

Sec. 2.7 More on Cursor Movement 77

The purpose of the B(eginning and E(nd options should be
clear by now. Try them out if youTd like. We postpone
discussion of the M(arker option until Chapter 5.

One remaining cursor movement operation needs to be
introduced in this chapter: the P(age activity, which moves
the cursor by a distance that is approximately the size of
the display screen. P(age is very handy for browsing
through the workspace.

What if you want to P(age backwards in the workspace?
Look at the first (leftmost) character on the menu line of
the screen. It is the Editor’s direction indicator. The
”>”, which should be there now, indicates that forward
motion (towards the end of the workspace) is assumed by
the Editor. To change to backward motion, press the < key
(left angle bracket, usually the shifted version of the
comma key). You should see the direction indicator change
to ”<”. If you invoke P(age next, the cursor leaps towards
the beginning of your workspace. Try exercising P(age in
both directions.

This direction indicator affects more than the P(age
activity. If the direction is backwards, [[space]] acts like
ffbsll, and Iretll moves to the end of the previous line,
rather than the beginning of the next line. The arrow keys
and lbs! are unaffected by the Editor’s direction status.

You can change the Editor’s direction indicator
whenever you can use the cursor movement keys such as
the arrows, [[space! and lbs!. You can also type the comma
key or the minus key as a substitute for typing ”<”, and
the period key or the plus key, instead of

The period and comma are available in this context
because on many keyboards, ”<” is the shifted version of
the comma, and ”>” the shifted version of the period.

You now know many ways to move the cursor, including
several equivalent approaches to each kind of cursor
movement. Each user of the Editor develops a style of
cursor movement in which some of these approaches are
emphasized and others are virtually ignored. In the style

78 Editing Text Chap. 2

we use in our own work, for instance, we rarely change the
Editors direction indicator, except in connection with the
P(age activity.

Now back to the original problem: changing the
numbers in each verse from "99" or "98" to the appropriate
ones. You could, of course, use the cursor movement keys
you have seen above to put the cursor on each "99", delete
those two characters and insert a "98" (or a "97", or a
TT96TT...), but thereTs got to be a better way!

2.8 FINDING AND REPLACING TEXT PATTERNS

One better way involves the F(ind activity on the Edit
menu, which allows the Editor do the work of finding each
occurence of TT99IT. If the cursor isnTt already at the
beginning of the workspace, use J B to move the cursor
there. Also make sure that the direction indicator is
pointing forwards, TT>Tt. Then invoke F(ind, and the
following prompt appears on the top line of your screen:

>FlndC1]: Kit
mm ■ .

You are now expected to enter a target text pattern:
that is, the one you wish to find. The pattern (or "string")
should be bounded on each side by a delimiter character,
such as "/". Any character that isn't a letter or number is
fine, as long as the same one is used on both ends of the
string and does not occur within the string. Here are some
valid strings with delimiters around them:

/99/
/tropical "blend"/
"ways/means"
.•"Hello!":

Normally, F(ind only discovers occurrences of the target
that are "isolated words" (that is, character sequences sur¬
rounded on both sides by blanks or special characters). For
instance, if the target is "the", the word "thereafter" is
ignored by F(ind. The description of F(ind in Chapter 5
has details on finding "embedded" patterns of this sort.

Sec. 2.8 Finding and Replacing Text Patterns 79

Type /99/; the cursor should leap to the end of the
first "99" in the current direction (forwards). Since this
instance of "99" is just fine as it stands, you need to go
on. Fortunately there is a short-cut that saves you typing
"99" again. When you search for the same string twice in
a row (or more), you can type TTFTT to select F(ind, and then
"S" (for "same"), instead of typing the string again. Even
more conveniently, it turns out that repeat factors work for
the F(ind activity just as they do for the simpler cursor
movement operations. Remember the "[1]" in the Find
menu? That was the repeat factor for that invocation of
F(ind. (Recall that an absent repeat factor is assumed to
be one.)

We can combine these two shorthand tricks and type
2FS to skip to the character after the third "99" in the
workspace. (In that short-hand sequence, the "2" is a
repeat factor, the "F" invokes F(ind, and the "S" indicates
that "99" should be sought again.)

We want to change that "99" to a "98". The following
sequence should do the job:

D HbsMetxJ Delete one character backwards.
i £ Qetxl] Insert an "8".

Here is the interesting part of the resulting screen:

>Edi+: A(djus+ C(opy D(el F(fnd Knsert J(ump K(ol M(argin P(age ? C 3
99 bottles of beer on the wall*

les of beer;
If of those bottles s Id happen to fall:

bottles of beer on the wall.

98_bottles of beer on
99 bottles of beer;
If one of those bottles
There'd be 98 bottles of

d happen to fall:
on the wall. ■Mi M

F(ind is certainly a handy activity for this job, but it
would be preferable if you didn’t have to do the explicit
Knsert and B(elete operations. And you don’t if you use
the R(eplace activity (abbreviated "R(plc" on the menu).
With this activity, you can replace occurrences of one
string of characters (called the target, just as in the F(ind

80 Editing Text Chap, 2

activity) with another (called the substitute). When you
use R(eplace, the Editor F(inds the first occurrence of the
target string you specify and replaces it by the substitute
string.

Invoke R(eplace now, by typing R; the following prompt
appears:

, - ■ ,
>ReplaceC1]: L(It V(ty

Ignoring for this chapter the TTL(it V(fy", this prompt is
requesting that you specify the target and substitution
strings. What you need to do is replace "99" by "98", so
type /99/ 798/ and make sure the replacement is done.

To complete conversion of the second verse, type
R /98//97/a Here is the interesting portion of the resulting
workspace:

>Ed!+: A(djus+ C(opy D(el
99 bottles of beer on the
99 bottles of beer;
If one of those bottles should
There*d be 98 bottles of beer on

98 bottles of
98 bottles of
If one of those
There *d be 97 bo¬

lt nsert J(ump K(ol Mtargln P(age ? []

fal

en to
e wal I

fal I

11111

imm
"im

.... ...

<• 'V, ' ■
list . :r'

t*nip

It should be clear now that you could go on to do
similar operations to correct the rest of the verses. Even
though the use of R(eplace would simplify that job
compared to doing it with I(nsert and D(elete, the task
would still be somewhat tedious.

A further simplification can be achieved by using
repeat factors with R(eplace. Just as with F(ind, the
repeat factor is shown inside square brackets in the
R(eplace menu. With R(eplace, the repeat factor
determines how many instances of the target string are
replaced by the substitute string. When the "infinite"
repeat factor ("/") is used, the result is that every
occurrence of the target string that is found in the current

Sec. 2.8 Finding and Replacing Text Patterns 81

direction of cursor movement is replaced by the substitution
string. (See section 2.7 for a discussion of the infinite
repeat factor.) The following sequence uses repeat
factors with R(eplaee to complete the corrections on the
first five verses of 99 Bottles of Beer.

2 R Z99//97/

R 7987/96/

2 R 799/796/

R 7987/95/

2 R 7997/95/

R 798/794/

Correct the two 99!s in
the third verse.
Correct the 98 in
the third verse.
Correct the two 99fs in the
fourth verse.
Correct the 98 in
the fourth verse.
Correct the two 99Ts in the
fifth verse.
Correct the 98 in
the fifth verse.

At last you!re done!

You certainly want to save this masterpiece on disk.
Go ahead and do that now, using the Q(uit W(rite activity,
and choosing some appropriate file name (say,
ITMYVOL:99BOTTLESTf). Remember to complete the entry of
the file name with Iretl. When the writing is done, type R
to R(eturn to the Editor for one more experiment with this
workspace.

The exercise below is intended to eliminate any
confusion you may have about the difference between the
effects of Q(uit E(xit and Q(uit W(rite. Here is the
sequence:

J B
/ R .beer..Coke.

a i
E
MYVOL:
99BOTTLES HretJ

Move cursor to start of workspace.
Replace all "beer" by "Coke".
Q(uit E(xit.
Re-enter the Editor and get
(from volume MYVOL:)
the file 99BOTTLES.TEXT.
If you chose a different
name in the Q(uit W(rite, above,
use that name.

82 Editing Text Chap. 2

The screen you see in the Editor should have lots of
"beer" and no "Coke" at all! The conclusion:

The work you do with a workspace in the Editor is not
saved on disk, and is lost forever, if you use Q(uit
E(xit to leave the Editor.

In the next section we use the creation of another
small workspace to show you how the Editor helps you in
entering text where the indentation structure is important
(as in outlines, for example). To prepare for that exercise,
leave the Editor now (via Q(uit E(xit, (J E).

2.9 ENTERING OUTLINE-STRUCTURED TEXT

The Editor is quite handy for working with text in which
the indentation of a line shows its position in a structure.
One example of such text is an outline. Another potential
example is a computer program.

We are indebted to The Official Preppy Handbook
for an example of an outline to work with in this and
subsequent sections. The word "preppy" was made famous
by Erich SegalTs best-selling novel, Love Story. The least
interesting definition of "preppy" is a young man in college
who had his high school training in a private "prep school."
Selections from the Handbook's Table of Contents are
shown below:

THE RIGHTS OF BIRTHRIGHT: The Years at Home.
Prep on All Fours: The Proper Pet.
Regulating the Cash Flow: Well-to-Dos and DonTts.

THE ROOT OF ALL PREP: The Years at School.
Preparing to Prep: Picking the School for You.

Boarding vs. Day
Single-Sex vs. Coed

Breaking the Rules: The Importance
of Getting Kicked Out.

Sec. 2.9 Entering Outline-structured Text 83

Enter the Editor with an empty workspace (by typing
E IretJ from the Command menu). Then invoke I(nsert and
type in the first line of the table of contents above. On
the second line, type [[space]] twice at the beginning. When
you finish that line and type Hretl, notice that the Editor
places the cursor under the ”P” of the previous line.

This behavior is called automatic indentation. When
you type spaces at the beginning of a new line, the Editor
assumes that means you are establishing a new indentation
level at the first non-space character you type. On your
next line, the Editor automatically indents the cursor to
that new indentation level.

After you enter the third line, the Editor initially
aligns the cursor with the beginning of the previous line.
The same principle you used above allows you to change
the indentation in the other direction. If you type HbsJ
twice and then the TTTHE ROOT OF ALL PREP” line,
another new indentation position is established. Go on in
this way to do the entire selection. When you’re done,
type [[etxj to confirm the insertion.

Remember, if you want to change the indentation on a
line, you must type Ispacel or libs]] immediately after
terminating the previous line with [[ret]].

This concludes our introduction to the aspects of the
Editor that are useful for working with programs and with
ordinary text like memos and books. If you are only
interested in using the Editor to develop programs, you may
skip the rest of this chapter and go right to Chapter 3.
You may want to come back and read the rest of this
chapter at some point. The last section "Printing Text
Files,” is likely to be of interest to you even if you use
the p-System solely for programming.

2.10 PARAGRAPH-ORIENTED TEXT

So far we have dealt with text that has lines as a natural
structural unit. We’ve seen poems, song lyrics and outlines.
There are many kinds of text, of course, where paragraphs
are the natural unit of structure, and line boundaries are

84 Editing Text Chap, 2

simply determined by the left and right margins that have
been established. In this section we introduce you to the
Editor activities which are useful for manipulation of text
that is paragraph-oriented.

You have just entered portions of a Table of Contents
into your workspace. Imagine now that each of those lines
is a sentence in a paragraph and that you need to get them
to look more like a paragraph than a set of independent
lines. As an exercise, we’re going to go ahead and fill this
imagined need.

There are two ways to proceed: the easy way (using
facilities built into the Editor for just this kind of task)
and the hard way (using Editor facilities that you already
know about). We spend a little time on the hard way,
first. (If you haven’t already typed Eetxl to accept the
insertion of the Table of Contents, do so at this point.)

The principal foundation of this more difficult approach
is that two lines can be merged into one by deleting the
invisible line separator that divides them. You can delete
that character by moving the cursor to the end of a line
(right after the last character), invoking D(elete, pressing
[[space]] (to move one character), and closing with Cetxll. If
you apply this process at the end of the first line of the
outline, you should get this result:

>Edl+: A(djust C(opy D(el Fdnd Knsert J(ump K(ol M(argin P(age ? []
THE RIGHTS OF BIRTHRIGHT: The Years at Home.Prep on All Fours: The Proper Pet.

Regulating the Cash Flow: Well-to-Dos and Don'ts.
THE ROOT OF ALL PREP: The Years at School.

Preparing to Prep: Picking the School for You.
Boarding vs. Day.
Single-Sex vs. Coed.

Breaking the Rules: The Importance
of Getting Kicked Out.

Since there is ordinarily some space between sentences,
you need to insert a space character at the position of the
cursor to complete the transformation. (Type
I [[space]] [[etx]].) If you apply this same process to the next
pair of lines, the following display results:

Sec. 2.10 Paragraph-oriented Text 85

>Edits ACdjust C<opy D(el FUnd Knsert J(ump K(ol M(argln P(age ? [3
THE RIGHTS OF BIRTHRIGHT: The Years at Home. Prep on All Fours: The Proper Pet.

Regulating the Cash Flow: We 11-to-Dos and Don’+s. THE ROOT OF ALL PREP: The Yel
Preparing to Prep: Picking the School for You.

Boarding vs. Day.
Single-Sex vs. Coed.

Breaking the Rules: The Importance
of Getting Kicked Out.

You probably have a n!n on the right-hand margin of
your screen, just like that shown above. When the Editor
cannot display a line completely, it substitutes a Tt!,T for
the last character that it can show (in our case the 80th).
The location of the "!" on your screen depends on what
line width your display can handle.

The entire line (without the ,T!TI) is still in the work¬
space. What we need to do now' is break this over-sized
line by inserting a line separator (just as we deleted one
earlier). Move the cursor right to the "T" in "The”.
Typing 22 ffrightj should do it. Then type I HretMetxJ to
complete the first few lines of your painful transformation
of the line-oriented workspace to a paragraph orientation:

FUnd Knsert J(ump K(o! M(argln P(age ? [3
Years at Home. Prep on All Fours: The Proper Pet.

We 11-to-Dos and Don’ts. THE ROOT OF ALL PREP:

Ieking the School for You.

Now, for the easy method! We need to change the
Editor to a different mode of operation: a mode designed
specifically for paragraph-oriented text. We deal with this
mode change in the next section.

2.11 CHANGING EDITOR MODES

Type S E to invoke S(et Environment. This activity allows
you to change certain aspects of the Editor’s behavior and
get at useful information. You should see a display like
that on the next page.

86 Editing Text Chap. 2

Environment: {options} <spacebar> to leave
A(uto Indent True
Fdlllng False
L(eft margin 1
R(Ight margin 80
P(ara margin 6
CCommand ch
S(et tabstops
T(oken def True

2301 bytes used# 16020 available

Patterns:

Editing: unnamed
Created January 2, 1983; last updated January 2,
Editor Version C 3.

1983 (revision 0)

In this screen the first group of lines (ending with
TTT(oken def,f) deals with options that affect the Editors
operation in various ways. The values of these options can
be modified. You choose the option you want to change by
typing the first letter of its name. You can return to the
Edit menu by typing [[space]].

The rest of the display provides information on the
status of the Editor and the current workspace. For
instance, it shows the name of the file from which this
workspace was copied and how many characters (or "bytes”)
of information are in the workspace.

We deal with all these options and status values
eventually in this book. For now, we are concerned about
only two of the options: "A(uto indent" and "F(illing".
These options determine whether the Editor is better suited
to line-oriented text entry or to paragraph-oriented entry.

A(uto indent controls the automatic indentation that
you saw in the previous section. If A(uto indent is True,
the placement of the cursor at the beginning of a new line
occurs as you saw it earlier. If A(uto indent is false, the
cursor simply starts at the left margin.

F(illing determines whether the Editor treats text as
paragraph-oriented or line-oriented. You’ve already seen
the Editor’s behavior when F(illing is False. When F(illing

Sec. 2.11 Changing Editor Modes 87

is True, the Editor attempts to keep text within the left
and right margins youTve established. It breaks lines
wherever necessary (between words) to maintain the
margins.

When A(uto indent is False, and F(illing is True, the
Editor makes handling of paragraph-oriented text very
simple. To reach this blissful state, type A; the previous
setting of A(uto indent is erased, and the Editor awaits the
new value. All you need to type is the first letter: F, and
the Editor does the rest. Typing F T sets F(illing to True
in a similar fashion.

We go back now to the Edit menu to try the easy way
of turning the outline into a respectable looking paragraph.
Before you leave the Environment menu, take note of the
values of the L(eft margin, R(ight margin, and P(ara margin
options. They indicate that text is to be kept between
columns 1 and 80, and that the first line of a new
paragraph is to start on column 6. These values determine
the appearance of the text when you return to the Edit
menu. Do so now, by typing IspaceJ.

2.12 WORKING WITH PARAGRAPH-ORIENTED TEXT

Why hasn’t there been any change in the appearance of
your workspace? The answer is that the Editor only
applies the margin restrictions automatically when new text
is being entered. To apply the margins to existing text in
your workspace, you have to invoke the M(argin activity.
Do that now by typing M; the screen should go blank for a
few moments; then the following display should appear:

>EdIt: A(djus+ C(opy D(el Fdnd Knsert J(ump K(ol M(argln P(age ? [3
THE RIGHTS OF BIRTHRIGHT: The Years at Home. Never on Thursday: Help In

the House. Prep on All Fours: The Proper Pet. Regulating the Cash Flow: We 11~
to-Dos and Don’ts. THE ROOT OF ALL PREP: The Years at School. Preparing to
Prep: Picking the School for You. Boarding vs. Day. Single-Sex vs. Coed.
Breaking the Rules: The Importance of Getting Kicked Out.

As you can see, the outline has become a paragraph.
Now let’s play with the values of the margin options and
see what effects they have. Return to the Environment

88 Editing Text Chap. 2

menu with S E. Just as before, you select an option for
modification by typing the first letter of its name. Try R.
The Editor awaits your entry of a new value for the R(ight
margin option. For this option, and the other numeric
options, you can enter a value as a simple integer (with
four digits or fewer), followed by [[retjj. Try 65 Eretl.
Leave the other values as they are and return to the Edit
menu with Ispacell.

Once again you need to invoke M(argin to apply the
new margin values to your workspace. When you do so,
this screen results:

>Ed11s A(djust C(opy 0(el FCInd Knsert J(ump Kiol M(argfn P(age ?
THE RIGHTS OF BIRTHRIGHT: The Years at Home.Prep on All

The Proper Pet. Regulating the Cash Flow: Wei I-to- Dos
>n1 +s. THE ROOT OF ALL PREP: The Years at School,
fng to Prep: Picking the School for You. Boarding vs.

ling Ie-Sex vs. Coed. Breaking the Rules: The Importance of
Kicked Out.

C 1

When you insert text, the Editor automatically applies
the current margins. As you enter words, the Editor
checks each one to see if it goes past the right margin. If
so, the entire word is moved down to the next line. You
can continue typing without worrying about when to press
EretU. You can see this facility in action by using Knsert
to add a few sentences to the outline/paragraph in your
workspace. (You may need to J(ump E(nd, first.) Be sure
to close the insertion with Eetxl.

When you do an Knsert within a paragraph, the Editor
automatically reformats the remainder of the paragraph
after you close the insertion. This automatic reformatting
does not occur, however, when D(elete is used within a
paragraph.

The Editor uses a very simplified notion of TTwordTT when
it makes decisions about where to break lines during
automatic margin control. It takes a word to be a group
of one or more letters bounded on each side by a space or
a hyphen ("-"). Therefore "MYVOLiDIRECTORY.TEXT"
would be treated as one word, and moved in its entirety to
the next line if the right margin were threatened. On the

Sec. 2.12 Working with Paragraph-oriented Text 89

other hand, Ttp-SystemTT would be considered two words, and
broken at the hyphen if necessary.

Paragraphs can be separated by one or more blank
lines. When youTre Knserting, and you signal a paragraph
break by typing ([retll twice, the Editor starts the cursor on
the new line at the P(ara margin. When you invoke the
M(argin command, it only modifies the paragraph that
contains the cursor. No matter where the cursor is
pointing in the paragraph, M(argin reformats the entire
paragraph.

Experiment with the handling of paragraph boundaries
by inserting a few strategically placed CretBs to make
several paragraphs. Also try adding some new paragraphs,
if you like. You'll see how the process works.

You can also prove to yourself that different margin
restrictions can be applied to different paragraphs. For
each of two paragraphs youTve entered, follow these steps:

o Invoke S(et Environment and change some or all of the
margin options (L(eft, R(ight, or P(ara).

o Move the cursor to the paragraph you'd like
reformatted with those margins, and type M for M(argin.

Here is one way your workspace could end up:

THE RIGHTS OF BIRTHRIGHT: The Years at Home.Prep on All Fours:
Proper Pet. Regulating the Cash Flow:

ell-to- Dos and Don»ts. THE ROOT OF ALL PREP: The Years at
School. Preparing to Prep: Picking the School for You.

Boarding vs. Day. SIi
Rules: The Importance

le-Sex vs. Coed. Breaking the
Getting Kicked Out.

90 Editing Text Chap, 2

For the three paragraphs shown on the previous page,
the margin settings were:

Paragraph Left Right Paragraph
Number Margin Margin Margin

1 1 70 6
2 6 65 4
3 10 65 10

Table 3.1

Notice that a Paragraph margin smaller than the L(eft
margin setting can be used to create "bulleted” paragraphs.

The Editor keeps no record within the workspace of the
margin settings that you have applied to a particular
paragraph. Therefore, you must be careful to use M(argin
(or do an Knsertion!) within a paragraph only when the
current margin settings are appropriate for that paragraph.
Fortunately, even if you forget this warning occasionally, it
is not hard to recover. (Just invoke S(et Environment,
adjust the margin settings, and use M(argin to reformat the
paragraph.)

Just as you can have paragraphs with different margin
settings in a single workspace, you can also have portions
that are line-oriented rather than paragraph-oriented. One
application of this capability is the inclusion of tables like
Table 3.1. The Editor includes specific support for tables
of this sort, including settable tab stops and the K(olumn
activity. We aren’t able to go into these facilities in this
introductory chapter, but you may want to look over the
relevant sections of Chapter 5.

You must be very careful when you work with a
mixture of line-oriented and paragraph-oriented material. If
you do an I(nsert or M(argin in a line-oriented section when
F(illing is True, the filling operation destroys the line
structure and is likely to cause you much grief. For
example, consider the screen on the next page, which shows
the text from Table 3.1 after an accidental M(argin
operation.

Sec, 2.12 Working with Paragraph-oriented Text 91

>Edf+: A(djus+ C(opy D(et F(ind Knsert J(ump K(ol M(argln P(age 1 t 3
Paragraph Left Right Paragraph Number Margin Margin Margin 1 1
70 6 2 6 65 4 3 10 65 10

We recommend that you set F(illing to False when you
are working with line-oriented material. That will keep the
Editor from doing automatic filling during or after an
Knsertion. Furthermore, if you accidentally type nM,T and
invoke M(argin, the Editor will disallow the operation.

We are now done with this Table of Contents
workspace. Unless you want to save it for some perverse
reason, leave the Editor now with Q(uit E(xit. (If you want
to save the workspace, do so, and then leave the Editor.)

Now you have all the basic tools for doing simple text
processing using the UCSD p-System. The next section
provides some suggestions about one particular kind of text
processing: producing memorandums.

2.13 PRODUCING MEMOS

We use the p-System ourselves for much of our professional
work. When we write programs, we certainly use the
p-System for that. But we also write design documents, as
well as technical and administrative memos, using the
facilities youTve learned about in this chapter and the
previous one. The purpose of this section is to pass on to
you some approaches we've found for simplifying this use of
the p-System.

If you write many memos, it becomes tedious to type,
over and over, the heading portions that are shared by all
memos. There is also the issue of setting up the EditorTs
environment (including margins, paragraph- vs. line-orienta¬
tion, and so on).

Our solution to this problem is to prepare a "starter”
file (which we call START.TEXT) in which all this work has
been done. WeTll show you in a moment how to build one
of these files.

92 Editing Text Chap, 2

Here is how you can use START.TEXT, once you have
built it. When you start a new memo, your first step is to
invoke the Editor and request that the START.TEXT file be
copied into the workspace. You can then modify that text
appropriately for the specific memo you’re preparing, and
enter the memo, itself. Using the Q(uit W(rite activity, you
can then write the workspace out to disk, with a file name
specific to that memo.

Enter the Editor now with an empty workspace. (If
you forgot to leave the Editor at the end of the previous
section, do that first, with G£ E.) You’re going to build a
START.TEXT file using the conventions we have found
convenient for our memos. Later you can modify it, if you
like, to suit your style.

The first job is to set up the Editor environment.
We’ll leave the Editor in line-oriented (rather than
paragraph-oriented) mode, so that entry of the heading lines
is easy. Just before you enter the text of a particular
memo, you will switch to paragraph orientation.

To choose unindented paragraphs and a right margin of
65, invoke S(et Environment and type R 65 [[ret]]
P 1 Iretll. Then return to the Edit menu with a ffspacej.

Since the Editor environment is saved on disk along
with the workspace when you Q(uit W(rite, setting these
options now will save you some time on each memo.

Now I(nsert the heading lines shown in the screen on
the next page. The lines should be preceded by several
Eretls and separated from each other by a blank line. The
contents of your workspace after you close the insertion
with Eetxl] are shown.

Sec. 2.13 Producing Memos 93

Now you may see why we left the Editor in line-
oriented mode. If the heading lines were treated as a
single paragraph, the use of Knsert to enter the addressee
would result in this screen:

MEMORANDUM

m m SB mt. 4 % \ ^ -- v' t,r" /'. ■...,'

To: Addressee From: Mark Overgaard and Stan S+rlngfellow Date: Subject:

Given the blank lines between heading items, the actual
effect of such an insertion would simply be the compression
of the first heading line, but you donft want that either.
Naturally you would put your name after "From:” if you
were preparing a START.TEXT file for yourself.

The "MEMORANDUM” line would certainly look much
better if the word were centered. There is an easy way to
center a line in the Editor, but it uses an activity that
hasnTt been introduced yet: A(djust. We leave a full
description of A(djust to Chapter 5.

All you need to know right now is that to center a
line, you should move the cursor so that itTs somewhere in
the line. Then type the sequence A C Hetxjj, which
invokes A(djust, causes the Centering of the line, and
accepts the adjustment. The completed START.TEXT
workspace is shown on the next page.

94 Editing Text Chap. 2

MEMORANDUM

To:

From:

Date:

Subject:

Mark Overgaard and Stan Strlngfellow

■- :

All that remains is to save the workspace on disk.
Type Q W MYVOLsSTART [ret! to do that. Then E(xit the
Editor.

Now we use the START.TEXT that you’ve created to
send a small memo from us to you. Unfortunately, you’re
going to have to do the entering of this memo!

Enter the Editor and copy the file MYVOL:START into
the workspace. (E MYVOL:START [ret! should do the job.)
Move the cursor so that it is immediately after the ”To:”.
Then follow this sequence of Editor input:

I [tab![tab! Enter I(nsert and move
to Addressee position.

Gentle Reader [[etx]] Memo is addressed to YOU!

5 [ret! 5 [space! Prepare to enter Date,

I [tab![tab!

Jan. 3, 1982 [etx!

2 [ret! 8 [space!

I [tab![tab!

Best Wishes [etx!

J E

and then do it.

Prepare to enter Subject,

and do it!

Prepare to enter the memo,

itself.

Now go on to the memo. It’s very brief. Before you
enter it, type SE AF FT [space! to use S(et Environment
to establish paragraph-oriented mode. The screen on the
next page shows the result of the final insertion.

Sec. 2.13 Producing Memos 95

IRANDUM

To: Gentle Reader

Date:

From;

Subject: Best Wishes
:

only the first of many memos you prepare with the

and Stan Strlngfellow

We hope this Is
UCSD p-System

The last step is to copy the memo from the workspace
out to disk. Invoke Q(uit W(rite. DonTt yield to the
temptation to enter ”$” EretB in response to the prompt.
You donTt want to modify the starter file. Instead, respond
with MYVOLiBESTWISHES [[retj; then E(xit. You’ve written
your first p-System memo!

2.14 PRINTING TEXT FILES

Now that you know how to compose memos and letters, the
remaining question is: tTHow can you print them?” There
are several ways to print text files in the p-System. They
range from the simple use of the Transfer activity in the
Filer to the use of a sophisticated text formatter program
like the one used to produce the master copies of this
book.

In between these two extremes is a very convenient
tool for routine printing: the Print utility, which is
included in the most recent releases of Version IV.l. This
utility can print your text files, and in the process, do
useful things like inserting page breaks and putting a
heading on each page. In addition, Print allows you to
control other aspects of the printing process, including the
spacing between lines (that is, double spacing or single
spacing) and the number of lines printed on each page.

Let’s try out Print on the memo you wrote in the
previous section. If Print is on your system disk, then

96 Editing Text Chap. 2

typing X PRINT IretJ should suffice to invoke it. If that
doesn’t work, scout around on your p-System disks to find
PRINT.CODE; you may want to Transfer it to your system
disk, since you’ll probably be using it often. If you can’t
find the program, you may have a version of the p-System
that was produced before Print was included.

Print produces a full screen menu that looks like this:

Print C]: Select an option (type H?" for help):
..

1(nput—>
0(utput—> PRINTER:
G(o. Print the Input file on the output.
A(dvance. Skip to the next page on the output.
M(ake script file for setting current parameters.
Q(ult. Leave this program.

No
No
No
Yes

D(ouble-space the lines?
N(umber the lines?
S(top before each page for single sheet loading?
U(se ASCII formfeed characters between pages?

1 '

1
1
3
66

FUrst page number
T(op Margin size In lines
B(ottom Margin size In lines
P(age size In lines (total: Includes margins and heading)

\
•

E(scape sequence start-character
C(ommand line start-character

H(eadei—> Page \page. File Is "Xflle”. Printed on \date.

Even though the activities of this menu are listed on
different lines, the approach to using it is similar to the
one-line menus used in other parts of the p-System. There
are two kinds of activities in this menu. One kind allows
you to determine the setting of an option that guides
subsequent print operations. (These are similar to the S(et
Environment options.) The other kind causes an immediate
action. For instance, you could use an option activity
(I(nput, in fact) to choose a file to print, and an action
activity (G(o) to start the printing.

Let’s try I(nput. When you invoke it, directions appear
on the top line of the screen and the cursor is placed after
nI(nput—>” to await your entry of the name of a file to
print. Enter MYVOL:BESTWISHES IretJ.

Sec, 2.14 Printing Text Files 97

To print BESTWISHES, you need only select G(o.
Before you do, however, make sure that you have paper in
your printer and that it is ready to print. When the
printer is ready, invoke G(o, and watch the printing of your
first p-System memo. As the top line of the screen
indicates, you can temporarily suspend the printing by
typing EspaceU, and cancel it by typing ”Q”. Try EspaceB
if you like. The resulting prompt should be self-
explanatory.

The printed version of BESTWISHES looks just like it
did in the Editor’s workspace, except that there is a header
line at the top of the page that contains a page number,
the input file name, and the current date. Print allows you
to design your own header line. We discuss that below.

After the memo is printed, the paper should advance to
the end of the page. If it doesn’t do that, try the
following recovery procedure:

It may be that your printer doesn’t respond to the
standard form feed character that Print uses to signal
the end of a page. You can tell Print not to use the
form feed character by typing U N. Do that, and try
printing BESTWISHES again. (You may need to advance
the paper manually to the top of the next page.) If
the new setting of the U(se form feed option results in
success, be sure to establish that setting whenever you
print a file in the future.

If you have to load each sheet of paper into your
printer individually, then there’s at least one more option
that you need to change from its initial setting:

o Use S Y to indicate to Print that you need a chance
to load paper before each page.

o Also, you may have to position the printing mechanism
an inch or so into the page in order to make contact
with the pinch rollers. If so, you’ll want to modify
your P(age size option. Assuming that your printer
puts six lines on an inch of paper, the lost inch at the
top of the page implies that your P(age size should be
60 lines for an 11-inch page, rather than 66 lines.
Change that option if necessary.

98 Editing Text Chap. 2

Figure 2.5 shows how the layout of pages produced by
Print is controlled by the P(age size, T(op margin, and
B(ottom margin options. Try printing BESTWISHES with
several different settings of these options to see what you
prefer. You can even set P(age size ridiculously small (say
10 lines), to see what effect that has. Remember that
each time you press ITGTT for G(o, the printing of the I(nput
file is guided by the option settings at that time.

T(OP MARGIN _

THIS IS THE HEADING LINE.

BLANK LINE

THIS IS THE FIRST LINE OF TEXT

ON THE PAGE. IT IS FOLLOWED

BY ADDITIONAL LINES UNTIL THERE

ARE ONLY B(OTTO M MARGIN LINES

LEFT ON THE PAGE. THESE LINES

ARE LEFT BLANK, AND PRINTING

BEGINS ON THE FOLLOWING PAGE.

B(OTTOM MARGIN

Figure 2.5

If the standard heading line that youTve seen on the
printouts so far is not to your taste, you can change it by
setting the H(eader option. For instance, typing tTHTT,
followed by EretJ, would erase the header altogether
(though two lines on the page would still be used, just as
always).

If you want a heading line, but donTt like the specific
arrangement of the standard line, you can rearrange it.
First you need to know something about escape sequences.

In any line produced by Print, the escape sequence
flag character has a special meaning. If the word after
the flag is one of the standard Print escape sequences,

Sec. 2.14 Printing Text Files 99

then some other string is substituted for the escape
sequence when that line is printed. For instance, if the
escape sequence tT\date,T is found, the current p-System date
replaces it in the printed version. Similarly, n\page!T is
replaced by the current page number, and TT\fileTT by the
name of the file being printed.

This escape sequence facility is very useful in the
heading line. You could, for example, set the heading line
to "Best Wishes—Page \pageTf to get heading lines of the
form: "Best Wishes—Page 1" and "Best Wishes—Page 2".

Escape sequences can also be useful within a memo, as
well. Remember the START.TEXT file that you created
above to serve as the starting point for writing memos?
You could modify the "Date:" line in that file to have
"\date" instead of any particular date. Then whenever you
printed a memo based on START.TEXT, the printed version
would contain the current date without explicit effort on
your part.

Print has several more capabilities that we don!t detail
here. For instance, you can have command lines inside
the file being printed. These can change the header line
on the fly, cause an explicit page break, or perform other
useful functions. It is also possible, with the M(ake script
activity, to record the non-standard option settings that you
routinely use in a script file. When you use this script file
to invoke Print, those option settings are automatically
established. This facility could save you considerable
inconvenience. Chapter 9 directs you to further reading on
these and other aspects of the Print utility.

DEVELOPING PROGRAMS 3

3.1 INTRODUCTION

In Chapter 2, we showed you how to edit text using the
p-System. We didnTt try to guide you on the content of the
memos or other material you might be planning to write.
Similarly, in this chapter, we get you started in p-System
program development, but have little to say about the
content of those programs or about the languages in which
they are written.

Much of what you need to know to develop programs on
a particular computer system has nothing to do with the
composition of programs, or with the details of a computer
language. You need to know how to enter the program
into the computer, and how to "compile" it (or translate it
from human terms to machine terms) and then how to run it
after this translation has been done. Many programming
texts ignore these logistic details because they are intended
to be used in many different programming environments that
may be very different from each other. Unfortunately, it

100

Sec. 3.1 Introduction 101

is often these practical matters that are most troublesome
for beginners, That?s where we come in. This chapter*
along with the previous chapters on editing text and using
existing programs* is intended to get you to the point
where you are comfortable with the logistic aspects of
developing p-System programs. We leave the descriptions of
the content and structure of programs to other books.

If you are already a relatively experienced programmer
in a language supported by the p-System, a quick pass
through this chapter, supplemented by appropriate language
reference manuals, should allow you to do productive
program development with the p~System.

If you don?t yet know how to program, you will need a
tutorial on programming in the language of your choice.
Several such tutorials are listed in Chapter 9. These books
can take you on from where this chapter leaves off.

Even though wefre not trying to tutor you on the
details of any particular language, we do need to provide
you with some basic background on what computer
languages are and why they are necessary. For instance,
why can1! we communicate with computers in ordinary
English (or Papuan or Burmese)?

3.2 COMPUTER LANGUAGES

There are many areas where the capabilities of computers
are superior to the corresponding abilities of humans. One
example is the speed with which computers can do
arithmetic. Another example is their unwavering attention
to detail.

There are also many areas where human proficiencies
far surpass the current capabilities of computers. One of
these areas is the understanding of "natural" languages
(such as English or Japanese). There are all sorts of
subtleties and potential ambiguities that humans can easily
untangle, but which would totally befuddle a computer.

102 Developing Programs Chap. 3

Consider, for instance, the sentence:

Time flies like a bullet.

There are many possible interpretations of this
sentence. For instance, if "time" is an adjective, "flies" a
noun, and "like" a verb, this sentence would be a
description of the preferences of a particular variety of
flies. On the other hand, it could be a prescription for
how to do timing measurements on flies: "You time flies
just like you time a bullet, of course!"

People can use common sense and contextual clues to
sort out which of several possible meanings for a sentence
is intended. Computers are short on common sense.

Communication with computers, therefore, occurs in
languages specifically designed for that purpose. These
languages are very strict in their definitions of the
meanings of words and sentences. They are also close
enough to natural languages (using words like "begin" and
"if") that they are quite comprehensible to humans.

Even though these computer languages are extremely
restricted compared to natural languages, they are still
much more complicated than the fundamental built-in
capabilities of typical small computers. Therefore, it is
usually necessary to have a translation process that
converts the language text that is suitable for human
consumption into a sequence of much more primitive
operations that a computer can do directly. This
translation process is called compilation, and the translator
is a program called a compiler. During the translation
process, the compiler also checks that the program obeys
the rules that govern the structure of programs in the
language (called its syntax).

On the next page, we list the steps involved in
developing and running a program in one of these languages.
After that, Figure 3.1 restates this process (with a slightly
different viewpoint) in diagram form.

Sec. 3.2 Computer Languages 103

o Use the Editor to create the text representation of the
program. This representation (which is too complicated
to be executed directly by the computer) is called the
source text, and is stored in the text files that you
read about in Chapters 1 and 2.

o Use a compiler to translate the source text to object
code that can be executed by the computer. This
object code is stored in code files like those you used
in Chapter 1. If errors of syntax are found during the
compilation, return to the Editor to fix them in the
source text and try the compilation again.

o Run the program object code and test whether it
performs as intended. If not, return to the Editor to
change the source text of the program and start
another cycle of compilation and testing.

o After the program has successfully passed your tests,
save it away for later use.

Figure 3.1

104 Developing Programs Chap, 3

3.3 LANGUAGES SUPPORTED BY THE p-SYSTEM

The three principal languages supported by the p-System are
UCSD Pascal, FORTRAN, and BASIC. Your choice of
language for a particular program will be determined by
your needs and experience.

UCSD Pascal is a variant of the language Pascal, which
was first defined in 1968 by Swiss computer scientist
Niklaus Wirth. Pascal is the most modern of the three
languages. Originally designed for teaching programming, it
is now probably the dominant language for introductory
computer science courses (at least at the University level).
In addition, Pascal is very widely used in industrial and
business applications, particularly on microcomputers.

UCSD Pascal was originally the only language supported
by the p-System. It is still the case that all major high
level p-System components (such as the editors and file
handler) are implemented in UCSD Pascal. It is generally
the language of choice for new programs written
specifically for the p-System environment.

FORTRAN is a mature language (first used in 1953)
which has achieved dominance in the area of scientific
applications of computers. The p-System implementation of
FORTRAN is a subset of FORTRAN-77 (which is named
after the year in which the definition was finalized). The
main attraction of FORTRAN is the large number of
programs that already exist, particularly in the area of
numerical analysis. This momentum means that most new
scientific programs are also written in FORTRAN. If you
want to apply computers to scientific or engineering
pursuits, you should probably be familiar with FORTRAN.

Like Pascal, BASIC was also originally designed for
beginning programmers. (The name is an acronym for
TtBeginnerTs All-purpose Symbolic Instruction Code.TT) BASIC
is very widely used (particularly on small computers). In
most implementations of BASIC, the style of use is more
interactive and immediate than the scenario described
above: the computer directly "interprets" the source of
your BASIC program without the complicating compilation
step.

Sec* 3.3 Languages Supported by the p-System 105

However, the BASIC in the p-System is implemented by
a compiler, just as UCSD Pascal and FORTRAN-77 are.
Because of this, p-System BASIC is probably no more
suitable for beginner use than UCSD Pascal, and may be
less so. The principal benefit of p-System BASIC is the
ability to import existing BASIC programs from other
software environments into the p-System environment.

In that p-System BASIC is not particularly suitable for
beginners, we donTt deal with it explicitly in this book.
The rest of this chapter provides details for using UCSD
Pascal and FORTRAN-77 in the p-System. Two separate
sections cover the details of setting up and then using each
of these two languages.

Before you can start using either language, however,
you need to cheek that thereTs enough room on your system
disk to store the programs you'll be working on. You need
an area of at least 20 blocks to do the programs in this
chapter. If you go on to write larger programs later, with
the approach used in this chapter, you may need additional
space.

Invoke the Filer now, and see what your situation is in
this regard. Type F L * Hretl. The summary line of the
resulting directory listing tells you the size of the largest
area on your system disk. If that number is 15 or greater,
you should be all right. If that number is smaller than 15,
or if you go on later to work on larger programs, you may
need to free up some space by moving some files off your
system volume. In Chapter 4, in a section called "System
Files," we describe the files that are typically on a system
disk and that must stay there, and those files you can move
to other volumes.

As soon as you have enough space available, go on to
the next section (if youTll be using UCSD Pascal), or to the
section after that (if you'll be using FORTRAN).

106 Developing Programs Chap, 3

3.4 USING PASCAL IN THE p-SYSTEM

Before you can use UCSD Pascal, you must have the Pascal
compiler on an on-line volume with the name
SYSTEM .COMPILER, The first part of this section helps
you get your p-System set up to meet that requirement.
After this step is completed, you can go on to do some
simple Pascal programming.

Setting Up For Pascal

Each p-System supplier organizes disks differently, so we
donTt know the packaging details of the Pascal compiler you
have. At this point you need to find out the volume and
file name of your Pascal compiler. The appropriate
computer-specific appendix, in the section entitled TTPascal
Set Up Details,” provides guidance. Read that section,
now.

If you discover that the Pascal compiler is already on
your system disk with the name SYSTEM.COMPILER, then
you don’t need to do any further configuration. You can
skip the rest of this subsection and begin using Pascal. If
the Pascal compiler is not already on your system disk, the
rest of this subsection tells you how make it available for
your use.

You need to put a copy of your Pascal compiler on
MYVOL: with the name SYSTEM.COMPILER. Make sure
you know the file name and volume name where your Pascal
compiler is stored. Now enter the Filer’s Transfer activity
by starting at the Command menu and typing F T. After
you see the ’’Transfer what file?” prompt, insert the
volume containing the compiler in one drive on your
computer while leaving the MYVOL: volume in another
drive.

Next enter the volume name and file name of the
compiler, followed by Iretl. When you see the ”To where?”
prompt, enter MYVOLiSYSTEM.COMPILER [[ret]].

Here is the screen you would see during the Transfer
activity if you were getting the Pascal compiler from the

Sec. 3.4 Using Pascal in the p-System

volume PASCAL: and the file PASCALCOMP.CODE:

107

Transfer what file? PASCAL:PASCALCOMP.CODE (Eretl
To where? MYVOL:SYSTEM,COMPILER Eretl
PASCAL:PASCALCOMP.CODE —> MYVOL: SYSTEM.COMPILER

Your set up operation is now complete. Remove the
disk from which your compiler was copied. If you removed
your system disk during this operation, return it to the
drive it was in before. Leave MYVOL: in a drive as well.
Type Q to leave the Filer.

Using Pascal

Now youTre ready to try your first Pascal program in the
p-System. The first step is to use the Editor to enter your
program into the computer. Invoke the Editor and type
Ire til to the "File?" question. Then use I(nsert to put the
simple Pascal program below into your workspace.
Remember that you can use the auto-indentation feature of
the Editor to do the two lines starting with "writeln". The
other lines should be on the left margin in your workspace.
When you enter the third line, replace "<your name>" by
your real name (for example, Raoul or Millicent).

program MyFirst;
begin

writeln (Congratulations, <your name>,?);
writeln (!on your first Pascal program!1);

end.

Each of the "writeln" (pronounced "write-lin")
statements causes a line containing the text inside the
quotes to be written to your computer display when the
program is run.

Compare your workspace with the original program
above to make sure that all the details are correct.
Computer language compilers are very finicky about details!
You should particularly check:

o that the left and right parentheses, "(" and ")", are
matched,

108 Developing Programs Chap. 3

o that the congratulatory messages are marked at both
ends by single quotes,

o that the semicolons (;) are placed as shown above, and

o that there is a period after the "end".

When your survey of this checklist is completed,
prepare to write your workspace out to disk by invoking
the Q(uit activity. For small program development, the
Q(uit U(pdate option is the most convenient. Invoke it by
typing U. After the Editor confirms the writing of your
workspace to disk, it returns you to the Command menu.

What you need to do now is run the program youTve
just created. It must be compiled first, however, so invoke
the C(ompile activity to do that. You should see the
following screen: •

Comp!IIng...
Output file for compiled listing? (<cr> for none)

The Compiler can produce an annotated listing of your
program containing the source lines, along with line numbers
and other information produced by the compiler. This
prompt asks you to indicate where that annotated listing
should be put. Enter a simple Cretl to indicate that no
listing is needed.

If you made no typing errors in entering the program,
some disk and screen activity occurs, and the Command
menu is redisplayed on the top line of your screen, leaving
the screen output of the compilation process below it:

Command: E(dlt» R(un» F(lle» C(omp» L(lnk» X(ecute# A(ssem, D(ebug»?[]
Output file for compiled listing? (<cr> for none) Eretl

Pascal Compiler - release level C]
< 0>..
MYFIRST
< 2>..

4 IInes compiled.

MYFIRST.

Sec. 3.4 Using Pascal in the p-System 109

If you don’t see a display like the one above, it’s
probably because you made a small typing error in entering
your program. When the compiler detects such errors
(called syntax errors), it sounds your computer’s bell and
stops. If this happens to you, we suggest you read on
through the end of this section without typing anything
further. After you know more about syntax errors and how¬
to handle them, come back and deal with this one by going
back in the editor and making sure that your workspace
matches the original program exactly.

The main purpose of the screen output produced during
compilation is to keep you posted on the Compiler’s
progress (and, particularly, to convince you that progress is
occurring!). The compiler makes two ’’passes” across the
program. In the first pass, it writes a dot to the screen
for each line it processes, and a line number in angle
brackets at the beginning of each line of dots. The
compiler completes the first pass by reporting the total
number of lines in your program.

The remainder of the display is produced by the second
pass, where dots are also used to indicate progress.

To run the program that has just been compiled, type
R.

Consider yourself congratulated! You are now back in
the Command menu, with the leftover output of your first
program on the screen:

Command: E<dl+. R(un» F(lle» C(omp. LUnk. X(ecu+e» A<ssem» D(ebug.?[]
Congratulations. Mill leant,
on your first Pascal program!

Let’s return to the Editor and make some modifications
to the program. This time when you enter the Editor, your
program is automatically read into the workspace.

This next program shows you one way in which
p-System programming ability can be useful to you. Say
you happened to win $10,000 in a contest, and that you
could choose the number of months over which the payment

110 Developing Programs Chap. 3

of the prize would be spread. The program presented
below will prompt you for a number of months, and then
calculate and display the minimum amount of the monthly
payment for you. We realize that this calculation could
also be done in your head or with the aid of any $10
calculator, but this program should prove a useful exercise,
nevertheless.

Use D(elete and then I(nsert to change the second
"writeln" statement and add four new lines as shown on this
screen:

>Ed11s A(djus+ C(opy D(el FUnd Knsert J(ump K(ol M(argfn P(age ? C 3
program MyFIrstj
begin

writeIn (‘Congratulations, <your name>,‘);
wrlteln (’on your $10,000 win!*):
W£jtejn.l‘^ many.months?.fretj
read In (months); 1 ret 31
monthly := 10000 dtv months; ,£retj,
yr.l.tej,n.,..(.,ypJiJLP.u,!.d aet at least.monthly , per.mont_h..».)j Cretl

end.
:

What is the purpose of these new statements? When
you run this program, the "readln" statement allows you to
enter a number of months at the keyboard. The value you
enter is stored in the variable "months". The variable
holds (or "remembers") the number you type in so that it
can be used in the subsequent calculation.

The next line accomplishes the main purpose of this
program. The total amount of the prize money ($10,000) is
divided by the number of months, and the result stored in
another variable, called "monthly".

The final line reports the results to you on the screen.
When the variable "monthly" is named in a "writeln"
statement, the number stored in the variable is written to
the screen, along with other text in the statement.

This completes your second program. As before, check
each line for agreement with the printed version above.

Now Q(uit U(pdate from the Editor, and try invoking
R(un immediately, without doing a C(ompile first. The

Sec. 3.4 Using Pascal in the p-System 111

p-System conveniently goes ahead and invokes the Compiler
anyway.

Whenever you Q(uit U(pdate from the Editor, the
p-System assumes you must have changed something in the
source text (otherwise, why would you be saving a copy on
disk?). Therefore, when you indicate your program is to be
run, the p-System automatically calls the Compiler first, to
translate your new program into machine understandable
terms.

After you type ffretj to refuse the offer of the
production of a listing, the behavior of the Compiler should
initially be just as it was in the previous compilation. But
then the bell on your computer sounds and the following
display appears:

Comp IIIng...
Output file for compiled listing? (<cr> for none) IretJ

Pascal Compiler - release level []
< 0>..
MYFIRST
< 2>...

wrlteln (^Payments over how many months? ’);
read In (months <—

Undeclared Identifier
Line 6
Type <sp> to continue* <esc> to exit* or *e’ to edit

The Compiler has detected a syntax error: a place in
your program where the structure rules that govern Pascal
programs are violated. The error is Undeclared identifier"
and the "<—" indicates the point in the program where the
error was detected.

The syntax rules of the Pascal language require that all
variables used in a program must be declared or named,
before they are used. Names of variables or other objects
in Pascal programs are referred to as identifiers. The
identifier "months" was not declared in your program. We
show you how to fix that problem shortly.

Textual error messages like that shown here are only
displayed if the file SYSTEM.SYNTAX (which contains those
messages) is present on your system disk. If the file is not

112 Developing Programs Chap. 3

present, then an error number is given (without a
corresponding message), and you should look in Appendix C,
"Syntax Errors," for the text of the error message. If you
are missing the file SYSTEM .SYNTAX, your screen shows
"Error #104" instead of "Undeclared identifier".

You have three choices at this point, as indicated by
the menu:

o You can type [[spacell to continue the compilation.
(You may want to see if there are any other syntax
errors in the program.)

o You can type "e" to return to the Editor, presumably
to fix the problem and try again.

o Finally, you can choose lescB to give up on the
compilation altogether and return to the Command
menu.

Choose the edit option. In a short while you should be
back in the Editor with the following screen displayed:

Undeclared Identifier: Type <sp>
program MyFIrst;
begin

wrlteln (’Congratulations. <your name>.’);
wrlteln (’on your $10,000 wInI’);
write In (’Payments over how many months? ’);
read In (months2;
monthly := 10000 dlv months;
wrlteln (’You would get at least $’. monthly . ’ per month.’);

end.

On the top line of the screen is the same error
message you saw during compilation. The cursor is
positioned at the place in the workspace where the error
was detected by the Compiler. The Editor waits for you to
type [[spacell, indicating that you have seen the error
message. After the [[space!, youTre all set to fix the
error!

You need to declare the variables "months" and
"monthly". To do so, move the cursor to the start of the
"begin" line (JB [[ret! should do it), and insert the following
line:

Sec. 3.4 Using Pascal in the p-System 113

var months, monthly : integer;dret]]

This construct names the variables "months" and
"monthly" so that the compiler knows about them before it
begins translation of the program. The "integer" part of
the line indicates that these variables can only hold whole
numbers, like "31", but not "57.3".

After fixing the error, Q(uit U(pdate and R(un. This
time the compilation should succeed and your program
should begin running. When it asks you for a number of
months, try entering 6 dretl. The minimum monthly payment
is immediately reported as $1666 (which is not the exact
payment for a six month spread because this particular
program can only calculate in whole numbers—no fractions).

When your program completes and the Command menu
returns, you can R(un the program again. Notice that this
time no compilation is needed, since no changes have been
made to the text of the program. Feel free to pursue your
fantasies of fabulous monthly incomes by trying various
payment rates.

This concludes your initial experience with Pascal
programming. The next section provides a similar treatment
of FORTRAN-77. You should skip that and resume reading
in Section 3.6, "p-System Workfiles."

3.5 USING FORTRAN IN THE p-SYSTEM

The first part of this section helps you get your p-System
set up for FORTRAN. After this step is completed, you
can go on to do some simple FORTRAN programming.

Setting up for FORTRAN

Before you can use FORTRAN, you must have the
FORTRAN compiler on an on-line volume with the file name
SYSTEM.COMPILER. You also need to have a runtime
library file for FORTRAN available, as well. (The runtime
library file contains program sections that are needed

114 Developing Programs Chap, 3

during the running of a FORTRAN program.)

You may have a choice to make for both the compiler
and the runtime library. Remember the discussion of real
numbers and their sizes in Chapter 1 (Section 1.18)? We
mentioned that the p-System supports two sizes of real
numbers (two-word and four-word), but only one size at a
time. A particular FORTRAN compiler/runtime library set
also supports only one of these sizes, either two-word or
four-word. You need to choose the set that matches the
real number size for which your p-System is configured. If
both sizes have been provided by your p-System supplier, it
is likely that the files in one set have ”2” in their names,
while the files in the other set have ”4” in theirs. For
example, one set might have the file names
FORTLIB2.CODE and FORTRAN2.CODE.

Each p-System supplier organizes disks differently, so
we donTt know the packaging details of your FORTRAN
compiler and runtime library files. The computer-specific
appendices, in the section entitled "FORTRAN Set Up
Details,” provide guidance on this score. Read that section
in the appropriate computer-specific appendix, now.

If you discover that the FORTRAN compiler is already
on your system disk with the name SYSTEM.COMPILER,
then you shouldnTt need to do any further configuration.
You can skip the rest of this subsection and begin using
FORTRAN. If the FORTRAN compiler is not already on
your system disk, the rest of this subsection tells you what
you need to do before you can use FORTRAN.

Your first task is to place a copy of your FORTRAN
compiler on MYVOL: with the name SYSTEM.COMPILER.
You also need to place a copy of the runtime library file
for FORTRAN on MYVOL: as well.

Now enter the FilerTs Transfer activity by starting at
the Command menu and typing F T, After you see the
”Transfer what file?” prompt, insert the volume containing
the compiler in one drive on your computer (removing your
system volume if you have only two drives). Be sure to
leave the MYVOL: volume in a second drive.

Sec, 3.5 Using FORTRAN in the p-System 115

Next enter the volume name and file name of your
FORTRAN compiler, followed by Iretl. When you see the
TTTo where?” prompt, respond as shown in this screen
(which assumes that the compiler was on the volume
FORTRAN:, in the file FORTRAN.CODE):

Transfer what file? FORTRAN:FORTRAN.CODE EretIP
To where? MYVOL:SYSTEM.COMPHER Iretl
FORTRAN:FORTRAN.CODE ~> MYVOL: SYSTEM.COMPILER

The next step is to place a FORTRAN runtime library
on MYVOL:. Invoke Transfer again, by typing T. In
response to the first prompt, enter the volume and file
name for the FORTRAN runtime library you chose earlier.
In response to the second prompt, enter MYVOL:
FORTLIB.CODE Bret!.

To complete the installation of this runtime library, you
must inform the p-System about it by creating a library
text file that names it. If you want to know in general
about library text files, see Chapter 4. It is sufficient
right now for you to know that you need to create a
simple text file that has one line in it. The line should
contain the file name MYVOL:FORTLIB.CODE.

Remove the disk from which your compiler was copied
and make sure that your system disk is installed in a drive.
(You may have removed the system disk during the Transfer
operation.) Also make sure that MYVOL: is still on-line.
TyPe £ to leave the Filer.

Enter the Editor with an empty workspace and insert
the line above. Typing the following text should do that:

E PretJ I MYVOL:FORTLIB.CODE IretJ Eetxfl

Now store the workspace on your system disk as
USERLIB.TEXT and leave the Editor, by typing the input
sequence shown on the next page.

Q W USERLIB HretJ E

116 Developing Programs Chap. 3

There is one last chore you need to do. If your system
disk was configured for Pascal programming, it may contain
a file called SYSTEM.SYNTAX. This file contains error
messages that may be produced by the Pascal compiler
when it processes a Pascal program. Since you're doing
FORTRAN programming, this file is not needed, and can, in
fact, be a hindrance. We recommend you remove it. (We
assume that you have made a back up copy of your system
disk, so that if you want to do Pascal programming, and
need this file again, you can get it.)

Enter the sequence F R ^SYSTEM.SYNTAX gretj. If
you donTt have SYSTEM.SYNTAX on your system disk, the
Filer reports:

SYSTEM:SYSTEM.SYNTAX — File not found <source>

(The "SYSTEM:" will be replaced by the name of your
system disk.)

If you do have SYSTEM.SYNTAX on your system disk,
the Filer reports the removal and requests your
confirmation. Give that confirmation with a Y:

SYSTEM:SYSTEM.SYNTAX —> removed
Update the directory? Y

You are nowT ready to do some FORTRAN programming.

Using FORTRAN

The first step is to use the Editor to enter your program
into the computer. Invoke the Editor and type gretj to the
"File?" question. Then use I(nsert to put the simple
FORTRAN program below into your workspace. When you
enter the third line, replace "<your name>" by your real
name (e.g., Jane or Sebastian). The statement number (in
the second line) should be on the left margin of your

Sec, 3.5 Using FORTRAN in the p-System 117

workspace. The FORTRAN statements themselves should
start in column 7.

program First
100 format (A,15)

write (*,100) Congratulations, <your name>,*
write (*,100) *on your first FORTRAN-77 program!*
end

When this program is run, each of the "write”
statements causes a line containing the text inside the
quotes to be written to your computer display. The
"format” statement controls the appearance of those lines.

Compare your workspace with the original program
above to make sure that all the details are correct.
Computer language compilers are very finicky about details!
You should particularly check:

o that the left and right parentheses, "(" and ")", are
matched,

o that the congratulatory messages are marked at both
ends by single quotes, and

o that each statement starts in column 7. (The "format"
statement is preceded by a statement number ("100"),
starting in column 1.)

In addition, whenever you write a FORTRAN program in
the p-System, be sure that you don*t have any extra lines
after the "end" statement. If you do have extra lines, the
program will not compile. An easy way to check this
aspect of your program is to enter J E and then make sure
the cursor is on the line immediately below the "end". If
necessary, delete text or blank lines from your workspace
until this condition is met.

When your survey of this checklist is completed,
prepare to write your workspace out to disk by invoking
the Q(uit activity. For small program development, the
Q(uit U(pdate option is the most convenient. Invoke it by
typing U. After the Editor confirms the writing of your
workspace to disk, it returns you to the Command menu.

118 Developing Programs Chap. 3

What you need to do now is run the program you’ve
just created. It must be compiled first, however, so invoke
the C(ompile activity to do that. You should see the
following screens

I* * * Comp 11fng
Output file for comp 11ed

... '7 « ” m \ v 17;. , -» , ., -- i

d listing? (<cr> for none) _

The Compiler can produce an annotated listing of your
program containing the source lines, along with line numbers
and other information generated by the compiler. This
prompt asks you to indicate where that annotated listing
should be put. Enter a simple HretJ to indicate that no
listing is needed. If you made no typing errors in entering
the program, some disk and screen activity occurs, and then
the Command menu is redisplayed on the top line of your
screen, leaving the screen output of the compilation process
below it:

Command: E(dlt» R(un, F(11e# C(omp, LUnk, X(ecu+e, A(ssem, D(ebug,?[]
Output file for complied listing? (<cr> for none) [[ret 3

FORTRAN-77 - (C) 1981 Silicon Valley Software, Inc.

FORTRAN Comp 11er C]

< 0>..
FIRST
< 3>...
5 lines. 0 errors.

■ML

.. . . , . ..

If you don’t see a display like the one above, it’s
probably because you made a small typing error in entering
your program. When the compiler detects such errors
(called syntax errors), it sounds your computer’s bell and
stops. If this happens to you, we suggest you read on
through the end of this section without typing anything
further. After you know more about syntax errors and how
to handle them, come back and deal with this one by going
back in the editor and making sure that your workspace
matches the original program exactly.

The main purpose of the screen output produced during
compilation is to keep you posted on the Compiler’s
progress (and, particularly, to convince you that progress is

Sec, 3.5 Using FORTRAN in the p-System 119

occurring!). The compiler writes a dot to the screen for
each line it processes, and a line number in angle brackets
at the beginning of each line of dots. A summary line
indicates the total number of lines processed and the
number of errors detected.

To run the program that has just been compiled, type
R.

Consider yourself congratulated! You are now back in
the Command menu, with the leftover output of your first
program on the screen:

Commands E(di+* R(un» FUle# C(omp» LUnk* X(ecu+e# ACssem* D(ebug»?[]
Congratulations* Sebastian*
on your first FORTRAN program!

Let’s return to the Editor and make some modifications
to the program. This time when you enter the Editor, your
program is automatically read into the workspace.

The next program shows you one way in which p-System
programming ability can be useful to you. Say you
happened to win $10,000 in a contest, and that you could
choose the number of months over which the payment of
the prize would be spread. The program presented below
will prompt you for a number of months, and then calculate
and display the minimum amount of the monthly payment for
you. We realize that this calculation could also be done in
your head or with the aid of any $10 calculator, but this
program should prove a useful exercise, nevertheless.

Use D(elete and then I(nsert to change the second
!TwriteTt statement and add four new lines as shown on the
screen on the next page.

120 Developing Programs Chap. 3

>EdIts A(djust C(opy D(el Fdnd Knsert J(ump K(ol MCargln P(age ? C 3
program First

100 format (A,15)
write (*,100) ’Congratulations, <your name>,’
write (*,100) 'on your $10,000 wind
write (*,100) ’Payments over how many months? ’ EretH
read (*,200) months IE ret 31
mnthiy » 10000 / months.! IretJ,
write (*,100) ’Your minimum monthly payment is $», mntjllY
end

What is the purpose of these new statements? When
you run this program, the "read" statement allows you to
enter a number of months at the keyboard. Your response
is stored in the variable "months". The variable holds (or
"remembers") the number you type in so that it can be used
in the subsequent calculation.

The next line accomplishes the main purpose of this
program. The total amount of the prize money ($10,000) is
divided by the number of months, and the result stored in
another variable, called "mnthiy".

The final "write" line reports the results to you on the
screen. When the variable "mnthiy" is named in a "write"
statement, the number stored in the variable is written to
the screen, along with other text in the statement.

This completes your second program. As before, check
each line for agreement with the printed version above.

Now Q(uit U(pdate from the Editor, and try invoking
R(un immediately, without doing a C(ompile first. The
p-System conveniently goes ahead and invokes the Compiler
anyway.

Whenever you Q(uit U(pdate from the Editor, the
p-System assumes you must have changed something in the
source text (otherwise, why would you be saving a copy on
disk?). Therefore, when you indicate your program is to be
run, the p-System automatically calls the Compiler first, to
translate your new program into machine understandable
terms.

Sec. 3.5 Using FORTRAN in the p-System 121

After you type ffretj to refuse the offer of the
production of a listing, the behavior of the Compiler should
initially be just as it was before. But then the bell on
your computer sounds and the following display appears:

Compiling...
Output file for compiled listing? (<cr> for none) tret31

FORTRAN-77 - (C) 1981 Silicon Valley Software, Inc.

FORTRAN Compiler []

< 0>..
FIRST
< 3>.
***** Error number: 163 In line 8
<sp>(continue), <esc>(terminate), E(dlt

The Compiler has detected a syntax error: a place in
your program where the structure rules that govern
FORTRAN programs are violated. The error is number 163,
and it occurs in line 8 of your program.

When you look up this error number in FORTRAN
section of Appendix C, "Syntax Errors, "or if you prefer, in
your FORTRAN reference manual), you find this specific
description:

Label used as format, but not defined in format
statement.

The problem is that the "read" statement depends on a
"format" statement labeled 200 to specify how the reading
is to occur. But there is no statement 200 in the program!

You have three choices at this point, as indicated by
the menu:

o You can type [[space]] to continue the compilation.
(You may want to see if there are any other syntax
errors in the program.)

o You can choose [[esc]] to give up on the compilation
altogether and return to the Command menu.

o Finally, you can type "E" to return to the Editor
(presumably to fix the problem and try again).

122 Developing Programs Chap. 3

Choose the E(dit option. In a few moments you should
be back in the Editor with the following screen displayed:

100

SYNTAX ERROR #163. Type <sp>
program First
format (A,15)
write (*,100)
write (*,100)
write (*,100)
read (*,200) months
mnthly = 10000 / months;
write (*,100) ’Your minimum monthly payment Is $’,
end

’Congratulations, <your name>,’
’on your $10,000 win!’
'Payments over how many months? '

mnthly

On the top line of the screen is a reminder of the
error. The Editor waits for you to type [[space!, indicating
that you have seen the error message. After the [[space]],
youTre ready to fix the error.

You need to add a "format" statement numbered 200 to
control the reading of "months." Move the cursor to the
end of the FORMAT statement that’s in the program
already, and I(nsert this new line:

[[retj2QQ format(I2)

This statement indicates that "months" should be
entered as a two-digit whole number, such as "11" or "06",
but not "5.6". When you run the program, be sure that you
enter exactly two digits for this number (even if the first
one has to be zero).

After fixing the error, Q(uit U(pdate and R(un. This
time the compilation should succeed and your program
should begin running. When it asks you for a number of
months, enter 0i6 ffret]]. The monthly payment is reported as
$1666 (which is not the exact payment for a six month
spread because this particular program can only calculate in
whole numbers—not fractions).

When your program completes and the Command menu
returns, you can R(un the program again. Notice that this
time no compilation is needed, since no changes have been
made to the text of the program. Feel free to try various
payment rates.

Sec. 3.5 Using FORTRAN in the p-System 123

This concludes your initial experience with FORTRAN
programming. There are two Editor activities that are not
covered in Part 1, but which can be particularly useful in
FORTRAN programming because statements generally start
at column 7 (unless they are numbered). We suggest that
you refer to Chapter 5 for descriptions of the Editor
activities X(change and A(djust. The first of these makes
it easy to add statement numbers to existing statements.
The second allows you to adjust indentations easily.
Another useful activity is S(et tabstops within S(et
Environment. You could set a tab stop at column 7 and
simplify your entry of FORTRAN statements.

3.6 p-SYSTEM WORKFILES

In this section we discuss an aspect of the p-System that
you’ve already used (without knowing it) in developing your
first p-System programs: the workfile facility. This
p-System feature is intended to simplify program
development, particularly on small programs. When a
workfile exists, the Command menu activities E(dit,
C(ompile, and R(un automatically apply to that workfile;
you don’t need to continually remember and type in a file
name (as you did when using the Editor for ordinary text in
Chapter 2). •

LetTs review the development process you just used to
create your first p-System program, and see how the
workfile facility was making life easy for you behind the
scenes:

o You started with an empty workspace and entered a
small program. To write the workspace to disk, you
used the Q(uit U(pdate activity. A file name must
ordinarily be used when a workspace is written to disk,
but the Editor did not bother you for a file name.
Instead, it wrote the workspace out to a temporary file
named SYSTEM.WRK.TEXT on the system disk. This
file became the workfile.

o Back in the Command menu, you then invoked the
C(ompile activity. The Compiler just assumed that you
wanted to translate the workfile, so it didn’t bother
you for a file name, either; it simply translated the

124 Developing Programs Chap. 3

contents of SYSTEM.WRK.TEXT, and put the results in
another temporary file: SYSTEM.WRK.CODE, also on
the system disk. (As you may recall, it is .CODE files
that are suitable for direct execution by your
computer.)

o You next invoked the R(un activity, which executed the
program in SYSTEM.WRK.CODE. In fact, equivalent
results would have occurred if, instead of typing R, you
had typed X SYSTEM.WRK Hretl. Try it, and convince
yourself!

o You then re-entered the Editor. It didnTt bother to
ask you what file you wished to edit, but simply read
SYSTEM.WRK.TEXT into the workspace. The Q(uit
U(pdate by which you left the Editor created a fresh
copy of SYSTEM.WRK.TEXT on the disk, and the
subsequent R(un and E(dit activities affected that new
version of the workfile.

Let’s invoke the F(ile activity and make sure that those
temporary workfiles are actually on the system disk. Type
F L j: Hretj. A screen similar to the following should
appear:

Filer: G(e+# S(ave# W(hat# N(ew» L(dlr#
SYSTEM:
SYSTEM.PASCAL 125
SYSTEM.FILER 37
SYSTEM.MISCINFO 1
SYSTEM.INTERP 28
SYSTEM.ED ITOR 47
SYSTEM.LIBRARY 29
SYSTEM.WRK.TEXT 4
SYSTEM.WRK.CODE 2

RAem# C(hng# T(rans» D(a+e#? [3

13-Jun-82
13-Jun-82
30-May-82
8-Apr-82
1-Apr-82
5-Jul-82
3-Jan-82
3-Jan-82

8/8 f I les<l Is+ed/ln-dlr># 274 blocks used# 45 unused# 45 In largest

There is indeed a code workfile and a text workfile
listed. We frequently refer to these related files
collectively as "the workfile,” even though there are often
two files (and possibly a third: the temporary listing file
called SYSTEM.LST.TE XT).

The workfile can be temporary and have a
SYSTEM.WRK name, or it can have an "explicit" name, such
as MYFILE. In the latter case, the components of the
workfile could be MYFILE.CODE and MYFILE.TEXT.

Sec. 3.6 p-System Workfiles 125

There are four activities in the Filer menu that relate
to the workfile facility. Here are their names, along with
brief descriptions:

o W(hat: used to find out the status of the workfile.

o N(ew: used to clear out any existing workfile.

o G(et: used to designate an existing file (or files) as
the workfile. After the G(et, Command menu activities
such as E(dit apply to that workfile automatically.

o S(ave: used to store temporary SYSTEM.WRK files
under explicit names.

Invoke the W(hat activity now, and you should see the
following screen:

Filer: G(et» S(ave» W(ha+» N(ew> L(dlr# R(em» C(hng» T(rans» D(a+e»? [1
not named (not saved)

The workfile is "unnamed” (that is, temporary) and
"unsaved" because you have not used the S(ave activity to
give it an explicit name.

When you invoke the S(ave activity, the Filer asks you
for an explicit name to use for the workfile:

Save as what file?

Type MYFIRST ffretj to save the workfiles under the
name MYFIRST on the system volume. Notice that no
suffix (either .TEXT or .CODE) can be used in the response
to this prompt. The screen indicates that both the .CODE
and .TEXT workfiles are saved:

Filer: G(et* S(ave> W(hat, N(ew* L(dlr» R(em» CChng, T(rans» D(ate»? C 1
Text file saved 4 code file saved•

Feel free to type L : EretJ to check that
MYFIRST.CODE and MYFIRST.TEXT actually showed up on
your system disk, and that the temporary files disappeared.

126 Developing Programs Chap. 3

Note that MYFIRST is still the workfile. If you were
to Q(uit the Filer now, and re-enter the Editor, the
familiar program in MYFIRST.TEXT would be read into the
workspace. What if you aren’t interested in MYFIRST any
more, but want to work on another program instead? The
N(ew activity can clear the workfile and break any
association with MYFIRST. You can see how N(ew affects
the workfile by invoking W(hat, then N(ew, followed by
another W(hat. You should see these screens in quick
succession:

Filers G(e+» $(ave» W(hat, N(ew,
Workfile Is SYSTEM:MYFIRST

L(dfr, R(em» C(hng,
WMMM.

T(rans» D(ate>? [3

% |||*| - m m m 1

Flier: G(et, S(ave, W(hat, N(ew, L(dlr, R(em, C(hng, T(rans, D(ate,? [3
Workfile cleared

Filer: G(e+> S(ave» W(hat» N(ew, L(dlr, R(em, C(hng, T(rans, D(ate,? C 3
No workfIle |§!l§!g

■H

In your version of the first screen above, the name of
your system disk, whatever that is, should appear instead of
SYSTEM.

At this point there is no workfile known to the
p-System. If you were to exit the Filer and enter the
Editor, the familiar T,File?,T question would be asked, just
as it was in Chapter 2.

You can now exercise the G(et activity on the file
MYFIRST. After you type G MYFIRST IretlJ, the Filer
reports:

Filer: G(e+» S(ave» W(ha+» N(ew» L(dlr, R(em» C(hng> T(rans» D(ate»? [3
Text 4 code file Ioaded

And a W(hat indicates that the ’’Workfile is
SYSTEM.-MYFIRST”.

The G(et activity doesn’t do any copying of files; it
simply establishes some file as the workfile. Any of the

Sec. 3.6 p-System Workfiles 127

Command menu activities E(dit, C(ompile, and R(un now
operate on the new workfile automatically.

As a final exercise with workfiles, let’s see what would
happen if you modified the workfile MYFIRST. Leave the
Filer with (£ and enter the Editor with E. As you would
expect, the workfile is automatically read into the Editor’s
workspace. If you had been intending to change your
program, you could do that and then Q(uit U(date. Since
the p-System assumes that you have modified the workspace
when you leave the Editor by Q(uit U(pdate, it is sufficient
for the purposes of this exercise to simply type CJ U,
without making any changes at all.

Let’s see what effects this excursion into the Editor
has had on the workfile status.

The first check to make is L : EretJ to see what
SYSTEM.WRK file(s) is (are) present. It appears that only
SYSTEM.WRK.TEXT exists. This is reasonable, since you
did a Q(uit U(pdate from the Editor, but no new
compilation. Notice also, however, that the files
MYFIRST.TEXT and MYFIRST.CODE are still on the disk,
as well.

The second check is to invoke the W(hat activity. The
result:

1lerj G(e+,
kfile Is

ive, W(h«
EMsMYFII

N(ew» L(dlr#
(not saved)

R(em# C(hng> T(rans, D(ate»? []

The workfile is the permanent file SYSTEM:MYFIRST,
but as the ’’not saved” indicates, the permanent file is now
out of date. At least as far as the p-System knows, the
file SYSTEM.WRK.TEXT contains the newest version of your
program.

The logical next step is to S(ave this ’’newest version”
of your program. When you invoke S(ave, the Filer asks
you whether you want to retain the current name of the
workfile for the new copy that is about to be made. The
screen you will see is on the next page.

128 Developing Programs Chap, 3

ggggg&| ^ :

Save as SYSTEM:MYFIRST? _
"■ '''M&jt&f ,-. -:;4iV-' ’ yf'< -,r‘, %> Vs,*”

If you respond with ,TNn, you are able to choose a new
name. Respond with a Y. Now the Filer requests
confirmation that the old copy of MYFIRST.TEXT should be
removed. Give that confirmation with a Y, and the screen
reports:

Filer: G(e+» S(ave* W(hat» N(ew# L(dlr» R(em# C(hng» T(rans> D(ate»? C 1
Text file saved & Code file removed.

What happened to the MYFIRST.CODE file that
corresponded to the old version of MYFIRST.TEXT? It has
been removed, since if it were left, the textfile and
codefile would not be compatible with each other. (Go
ahead and check, if you'd like, that MYFIRST.CODE is
gone.) This is a very convenient service of the workfile
facility, because it helps you avoid a lot of confusion.

The diagram in Figure 3.2 should help you remember
how workfiles are used. WeTve taken the Figure 3.1
diagram and added the sequence of p-System activities that
is involved in each of the major program development steps.

Sec. 3.6 p-System Workfiles 129

E(DIT [[RETU OR

F(ILE G(ET Q(UIT E(DIT

EDIT THE TEXT . . .

Q(U1T U(PDATE

R (UN

F(ILE S(AVE Q(UIT

Figure 3.2

You may be wondering at this point if the workfile facility
can be used for non-program text, such as the memos and
poems that you worked on in Chapter 2. The answer:
workfiles can be used for any text files, whether or not
they contain programs.

Why then didn’t we introduce the concept back in
Chapter 2? The reason is that the use of workfiles doesn’t
necessarily offer a lot of benefits when you’re working with
ordinary text files: the simple Q(uit W(rite approach we
used in Chapter 2 is fine.

The key observation is that the effort of designating a
workfile is most worthwhile when you’re going to do many
operations with it (for instance, go many times through an
E(dit, R(un cycle). If you’re just going to E(dit, the use of
G(et and S(ave doesn’t save much time, and can introduce
unneeded confusion. You’re welcome, of course, to
experiment and reach your own conclusion.

130 Developing Programs Chap, 3

You should now know enough about workfiles to do
simple program development using the p-System.

Another skill you need is the ability to design
programs—to take a description of a problem and write a
program to solve that problem. As we indicated in the
introduction to this chapter, this program design skill is
largely independent of the p-System, so we leave that to
one of the many excellent texts on the subject.

Once youTve designed your program, entered it into the
workspace with the Editor, and convinced the Compiler to
swallow it (probably after fixing some syntax errors like
you did in this chapter), your program may still not do
what you intended. For instance, the p-System may detect
an "execution error" during the operation of your program
(just as the Compiler can detect syntax errors). The next
section deals with this possibility.

There are many other ways in which your program may
fail to operate as you intended. For instance, the program
may appear to operate normally, with no errors detected by
the p-System, and still produce incorrect results. A
program that doesnTt do what itTs supposed to is said to
have bugs. Most techniques for stamping out bugs (or
avoiding them in the first place) are not specific to the
p-System, so we don't go into them in this book.

3.7 COPING WITH EXECUTION ERRORS

In a very limited sense, the computer can check its own
actions to make sure that they are legal and sensible.
When one of these checks reveals a problem, your program
can be brought to a screeching halt. This is called an
"execution error" to distinguish it from the "syntax" errors
that are caught by the Compiler during the translation
process.

When one of these execution errors occurs, it will be
very obvious that the program has failed, and probably
quite easy to discover the unhealthy symptoms that caused
it to fail. However, the task of identifying and curing the

Sec. 3.7 Coping with Execution Errors 131

program disease that caused the symptoms may be somewhat
harder.

You can watch an execution error happen by running
your MYFIRST program. Yes, there is a potential error
lurking in that simple program! Use the Filer to G(et
MYFIRST as the workfile and R(un. A compilation is
automatically performed, since the code file that you
produced earlier was removed.

When your program finally asks you the period over
which you want the payment of your prize to be stretched,
enter 0 EretJ. This would correspond to immediate payment
of the entire prize. Almost immediately, trouble strikes.
The bell sounds, and an execution error message appears on
the bottom line of your screen:

Running...
Congratulations# MI 11 leant#
on your $10#000 win I
Payments over how many months?
0

Divide by zero—Seg MYFIRST P#1 0#83 <space> continues

The screen shown here corresponds to the Pascal
program that you would have produced if you followed the
steps in Section 4.4. Some details will be different if you
did your first program in FORTRAN.

You have just watched the occurrence of an execution
error. Unlike the similar experience with the EbreakJ key
in Chapter 1, this is an honest-t0-goodness error! As you
may have already known, it is not possible (at least on a
mere computer) to divide zero into 10,000. The p-System
detected an attempt to do so in your program and
complained loudly.

132 Developing Programs Chap, 3

You know exactly where this difficulty occurred in your
program, since there is only one divide operation. In other
programs, it is often the case that you could isolate the
location of the execution error because of program actions
(such as output to the screen) that happen just before the
error is detected. Circumstantial evidence of this sort is
often sufficient to pinpoint the location in your program
where the execution error was detected.

When circumstantial evidence is not enough, the
p-System provides a more direct way to determine the error
site. Within the execution error message, just after the
error identification (for instance, "Divide by zero"), are the
error coordinates that define exactly where the error
occurred (in terms of the compiled version of your
program). These coordinate items are:

o The segment name (introduced by "Seg"). The
"segments" of a program are major divisions within it,
and each of them is named. In small programs like
those youTl probably be writing, there is usually only
one segment, and its name is the name of your program
(such as "MYFIRST").

o The procedure number (which follows the "P#"). In
your initial small programs, this will generally be a "1".
A "procedure" is a programmer-designated logical
section of a program segment. When each procedure is
translated, it is assigned a number by the compiler.

o The procedure offset (introduced by "O#"), which
designates the location in the procedure where the
failure occurred. The translated procedure consists of
a sequence of computer instructions. Each instruction
occupies one or more bytes of storage space. This
offset number indicates where in this series of bytes
the error occurred.

These three items together constitute an "address" of
the error location, just as a country code, area code, and
phone number can uniquely identify a particular phone. The
specific address shown above corresponds to the location of
the division operation in the Pascal program from Section
3.4. If you did your first p-System program in FORTRAN,

Sec. 3.7 Coping with Execution Errors 133

the address on your screen is different from that shown
above.

Now the question is, how can you associate these error
coordinates with a particular point in the text version of
your program? Only then can you figure out what caused
the problem. The answer lies in a compiled listing of your
program. In such a listing the lines that make up your
program are recorded, along with the "address” of each
line, and other useful information. The next several
paragraphs explain how to interpret the compiled listings
produced by the Pascal and FORTRAN compilers and
discover where in your program an execution error
occurred.

Figure 3.3 contains a compiled listing of the Pascal
program, MYFIRST. In a Pascal compiled listing, the first
column of numbers is simply a line number. Of the
remaining numbers on each line, the most interesting are in
the third column, which contains the procedure number, and
in the fifth column, which contains the procedure offset
corresponding to the beginning of that line.

Given an error coordinate containing a procedure
number and procedure offset, you can use these two
columns to find the line where the error occurred. The
error line must have a matching procedure number and an
appropriate procedure offset. We have marked the error
line in Figure 3.3 with an asterisk, Notice that your
error offset number is greater than that listed for the error
line, and less than or equal to the listed offset for the line
following.

1 program myfirst;
1 var months# monthly; Integer;
0 begin
0 writeIn (‘Congratulations# <your name>#‘);

20 wrlteln (‘on your $10#000 w!nl‘);
40 wrlteln (‘Payments over how many months? ');
60 read In (months);
76* monthly ;= 10000 dlv months;
83 wrlteln (’You would get at least $'# monthly#

0 end.
’ per month.*);

Figure 3.3: Pascal Compiled Listing

134 Developing Programs Chap. 3

Figure 3.4 shows a compiled listing for the FORTRAN
program FIRST. The first number on each line is simply a
line number. The second number is the procedure offset
corresponding to the beginning of that line.

In the simple programs you write initially, any
execution errors will probably have a procedure number
equal to two (indicating that they occurred in the main
program). We wonTt go into the more complex case where
subprograms are present. Locating the line containing the
execution error, then, is simply a matter of matching the
procedure offset in the error coordinate to one of the lines
of your listing.

In the example listing below, we have marked the line
where the error occurred with a "*". Notice that your
error offset number is greater than that listed for the error
line, and less than or equal to the listed offset for the line
following.

; . . .
0. 0 program First
1. 0 100 format (A,15)
2. 0200 format (12)
3. 0 write (*,100) ’Congratulations, <your name>,’
4. 24 write (*,100) ’on your first FORTRAN-77 program!’
5. 49 write (*,100) ’Payments over how many months? ’
6. 73 read (*,200) months
7. 100* mnthly = 10000 / months
8. 108 write (*,100) ’Your minimum monthly payment Is $*, mnthly
9. 136 end

Figure 3.4: FORTRAN Compiled Listing

We show you in the next section how to produce one of
these compiled listings. Before we can do that, though,
you need to leave the error site and return to the
Command menu.

As the error message indicates, you should press
IspaceH when youTre ready to go on. "Go on," in this
context, means "abandon the attempt to execute this
program and return to the Command menu." When you type
[[space]], there is a pause with some disk activity while the
p^System reinitializes itself (to repair any damage that
might have been caused by the execution error). Then the
Command menu returns.

Sec* 3*7 Coping with Execution Errors 135

Instead of running into an execution error, your
program could fail by stumbling into an infinite loop,” in
which repetition of a particular section of the program goes
on indefinitely.

Imagine the consequences if this kind of difficulty were
to show up in a program directing the activities of an
automated bank teller (one of those "money machines” that
allow you to do bank transactions at odd hours). The
program could get stuck in the "dispense cash” section and
spew out twenty dollar bills indefinitely! In this situation,
but also in your own programming work, it is sometimes
highly desirable to get a program to halt unconditionally.

The [[break]] key that we introduced in Chapter 1
addresses this need very nicely. If your program appears to
be stuck in an infinite loop, typing [[break]] causes an
execution error, and error coordinates are given, just as
with the "Divide by zero” error. (This doesnTt necessarily
work on every p-System implementation. On some
computers, keys that you type may not be recognized by
the system while a running program is doing pure
calculation, with no input or output activity.)

After stopping a program with the [[break! key, you
can use the approach described above to locate the part of
your program where the endless looping is occurring. (This
will only work if the program is actually executing a part
of your program when you press [[break]]. It may be that
some operating system section, or section of the FORTRAN
runtime library is executing. In that case, the error
coordinates shown in the execution error message will not
correspond to your program at all.)

One drawback of using the [[break]] key to halt your
program is that you cannot restart it. The program is
aborted and the p-System re-initialized.

However, there is another approach that can be used to
stop and restart your program: the [[stop/start]] key. The
effect of pressing this key is to suspend output to the
console until you press it again. Therefore, if your
program is producing output to the console when the key is

136 Developing Programs Chap. 3

pressed, the program will pause until the key is pressed
again, allowing output to resume. If, however, your
program is simply computing, and not producing output, then
Istop/startll has no effect on its progress.

We mentioned the benefits of compiled listings above,
but didnTt describe how to produce one. That is the last
topic of this section.

Go ahead and invoke the Compiler (assuming your
workfile is still MYFIRST). You should soon see the
familiar prompt:

Output file for lied listing? (<cr> for none) __

Instead of responding with CretH, as you have in
previous compilations, type PRINTER: Hretl, or
CONSOLE: ttretl. Each of these responses causes a listing
to be produced on the corresponding device. You should
use PRINTER: if you have a printer, since a listing on
paper is usually more useful than the memory of a listing
flashing by on the screen.

If you do choose the CONSOLE:, you may need to use
the [[stop/startU key that was just mentioned; otherwise, the
listing may go by so quickly on the display that you wonTt
be able to read it. Also, a standard formfeed character is
sent to the console at the beginning of each page. On the
printer, this character causes a new page to be started.
On the console, these characters may show up as strange
visible characters, or may cause the screen to be cleared
at the beginning of each page.

You can choose to send a listing to a disk file such as
MYLIST.TEXT, rather than using CONSOLE: or PRINTER:
as the destination. To do this, substitute the desired file
name where CONSOLE: or PRINTER: were used above.
Once a listing file is complete on the disk, you can
transfer it to PRINTER: or CONSOLE:. You could even
peruse the file with the Editor, but that might be a bit
awkward, since the file is likely to have wider lines (up to
120 columns) than your screen can display.

THE OPERATING SYSTEM

4.1 INTRODUCTION

The first three chapters of this book were designed to lead
you on an interesting tour of the UCSD p-System and give
you a feeling for how it works. If you are fairly
experienced with computers, you may have decided to skim
those chapters and start here.

The next three chapters provide a more thorough and
systematic discussion of the p-System. In this chapter, we
cover general p-System concepts and the Command menu
items. The next two chapters deal with two of the most
frequently used p-System components, the Editor and the
Filer.

137

138 The Operating System Chap. 4

4.2 STARTING THE p-SYSTEM

Before you can do anything with the p-System, you must
start it running on your hardware. This process is
sometimes called "bootstrapping.” It is usually very easy
and involves two or three steps similar to these:

o Turn your computer on.

o Place your system disk in the appropriate drive,

o Perhaps press a button or two.

Then, a greeting message and the main p-System menu is
displayed. The disk that you use to bootstrap the p-System
is called the system disk.

If you do not already know how to start the UCSD
p-System on your computer, you should look at the appendix
for that particular computer at the end of this book. If
you are using a computer for which an appendix has not
been included, consult the appendix "The p-System on Other
Computers."

4.3 MENUS AND PROMPTS

When the p-System first starts running, the Command menu
is displayed:

Whenever a question mark is the last item on a menu, as in
this case, there is more to the menu than can be displayed
on the screen. If you type "?", the rest of this menu is
displayed:

Command: H(alt» f(nltlallze» U(ser restart* M(onltor []

The Command menu is at the outermost level of the
UCSD p-System. An item on this menu is selected by typing
its first letter. The first letter is always in upper case

Sec. 4.3 Menus and Prompts 139

and is separated from the rest of the word by a ”(". For
example, to select E(dit, you should type "E".

Most of the activities on this menu have menus or
prompts of their own. For example, the Editor has the
following main menu:

Edit: A(djus+ C(opy D(el FUnd Knsert J(ump K(oI M(argln P(age ? [3

This menu is said to be one level below the Command
menu. Several of the activities on it have menus of their
own. A(djust, for instance, has a menu that looks like this:

>Adjus+: L(jus+ R(jus+ Cfenter <arrow keys> (<etx> to leave)

There is always some way to return from a lower level
to a higher level. Usually, you can select Q(uit, or type
lletxl or ffescl, depending upon where you are. (The EetxD
and EescB keys are known as special keys and are described
in the next section. We indicate special keys in this book
by using the double square brackets, as shown.) Normally,
the current menu tells you how to return to a higher level.

Notice that typing the same letter at different levels
can have a different effect. For example, TTAn selects the
Assembler from the Command menu, but it selects A(djust
from the Edit menu.

It is often the case that a prompt is displayed rather
than a menu. A menu, as we just pointed out, requires
that you type a single letter to select an item. A prompt
requires that you type in some information, followed by
Iretl.

For example, if you select X(ecute from the Command
menu, you see this prompt:

Execute what file ?

140 The Operating System Chap. 4

You are expected to type in the name of a file followed by
Iretll, as follows (responses are underlined in this book):

1 . i ‘ . ■ . , • ■ ■

Execute what file ? A.PROGRAM Iretj

(We explain more about files below. For now we are simply
concerned with how to respond to any sort of prompt.)

If you make a mistake while responding to a prompt,
you can use Ebsl to move the cursor backward. As you do
this, characters are erased. You can then retype the
response correctly.

There is a kind of prompt that only requires you to
enter a single letter. This is one where the response is
either nYTT for yes, or ,TN" for no. You can use lower case
or upper case letters. Here is an example of one of these
prompts:

Are there 320 blocks on the disk ? (Y/N) Y

Often the T,(Y/N)" is not displayed, but it should be obvious
from the context that a yes/no answer is required.

4.4 SPECIAL KEYS

There are several keys which have special significance to
the p-System. We already mentioned several of them in the
previous section.

Most computers do not have physical keys to correspond
to every special key the p-System uses. You should look at
the appendix for your particular computer at the end of
this book (or general computer appendix) in order to see
what you should type for these keys.

NOTE: These keys are summarized on the inside front cover
of this book.

Often, you may need to press two keys at once in
order to produce one of the p-System's special keys. For

Sec. 4.4 Special Keys 141

example, many computers require that you hold down the
Ccontroll key and type r,Cw in order to produce the tteofl
key.

The Editor uses all of the keys described in this
section, and more. It gives a slightly different meaning to
some of them. The Editors use of special keys is
described in Chapter 5.

Here are the special keys which are used throughout
the p-System:

ttretll This key indicates that you have
finished typing your response to a
prompt. When it is shown on a prompt
or menu, it is placed in angle brackets
in one of these forms: <ret> or <cr>.
The first version is derived from
"return” and the second from "carriage
return."

[space]] The space bar usually produces a blank
space in the text you are typing (just
as on a typewriter). There are some
situations where prompts or menus
require a space either by itself, or as
a separator between items of input. It
is shown on menus and prompts like
this: <space>, <spacebar>, or <sp>.

(EbsJl The back space key allows you to
move the cursor backward, erasing
what you have typed so far. It is
usually used for correcting mistakes
while responding to a prompt. It is
shown on menus and prompts like this:
<bs>.

[esc]] The escape key often allows you to
escape (exit without doing anything)
from a prompt or menu to the next
higher level prompt or menu. It is
displayed like this: <esc>

142 The Operating System Chap. 4

[[delete line!

[[break!

Estop/start!

[[flush!

Eeof!

This key erases the entire line that
you have entered while responding to a
prompt. It is a quick way to
backspace over all of your input. It is
rarely displayed as a menu item except
in the Editor where it appears as
.

This key allows you to manually
interrupt a programs execution. When
this key is typed, the program that is
running is immediately terminated. An
execution error message is displayed
and you are asked to type [[space! to
continue. When you do the p-System
is reinitialized.

This key allows you to temporarily
stop the program that is currently
running. (That program may also be a
p-System component such as the Editor
or Filer.) When this key is typed, the
running program is halted before the
next I/O operation is performed. In
order to resume execution, type
Istop/start! again.

This key causes output to the console
to be suppressed. This means that
characters normally displayed on the
screen will not appear. To return the
situation to normal, type [[flush! again.

This key signals the end of file from
the console. When the keyboard is
used as an input file, this key
indicates that you have finished typing
in the contents of that "file."

Sec. 4.5 Disk Files File Names 143

4.5 DISK FILES AND FILE NAMES

The p-System makes extensive use of disk storage. It runs
on computers that use 8 inch, 5-1/4 inch, and 3-1/2 inch
diskettes, as well as large capacity hard disks.

When information is stored on a disk, it is placed in a
file. Each file is a collection of information that can be
accessed, changed, removed, and so forth. There may be as
many as 77 files on a disk at one time. If you have a
need to place more files on one disk, you can use the
subsidiary volumes facility (if you have p-System version
IV.l). Subsidiary volumes are described in Chapter 6.

There are several types of files. Text files are
generally created by the Editor and contain textual
material, such as letters, memos, poems, or human readable
computer programs. Code files are created by the
compilers and the assemblers, and contain code which can
be run by the computer. Data files can be created in a
variety of ways and may contain miscellaneous sorts of data
such as names and addresses, or part names and part
numbers. There are other types of files as well.

Each file has a file name. This name must contain 15
or fewer characters. The valid characters that may be
used to make up a file name are shown in the following
table:

Valid Characters for File Names

Letters
Numbers
Period
Underline
Dash
Slash
Back Slash

A through Z
0 through 9

/
\

A file name may have a file suffix which usually
indicates the type of the file. Here are the file suffixes
(this book does not cover all of the files types):

144 The Operating System Chap. 4

File Suffix: File Type:

.TEXT

.BACK

.CODE

.SVOL

.BAD
•FOTO
No suffix

A text file
A backup text file
A code file
A subsidiary volume file
A bad block file
A graphics image file
A data file

Usually, you are responsible for choosing the file name.
Here are some valid and invalid file names:

Valid File Names:

PROGRAM.TEXT
PROGRAM. CODE
A-DATA_FILE
MY/FILE123/NEW
BAD.00192.BAD
PICTURE.FOTO
MY-VOL.SVOL

Invalid File Names:

A_FILE_N AME_TH AT_IS_TOO_LON G
MY,FILE

The first invalid example exceeds the 15 character limit.
The second name contains an illegal comma.

A file name can be followed by an optional size
specification. The size specification is only used when a
file is created (by the Filers M(ake activity or by a
program). The size specification indicates the fileTs length
and is bounded by square brackets. It has these forms:

File Size Specification:

FILE-NAME [number]
FILE.NAME or FILE-NAME [0]
FILE-NAME [*]

Sec. 4.5 Disk Files File Names 145

If a number is used (other than 0), the file is created to
occupy that number of blocks. A block is 512 bytes (or 512
characters). The file is created in the first area on the
disk that contains that many blocks. If [0] is used, or if
no size specification appears, the file is created to occupy
the largest unused area on the disk. If an asterisk is used,
the file is created to occupy half of the largest area, or
all of the second largest area, whichever is larger.

NOTE: The information presented in this section is
summarized on the inside back cover of this book.

4.6 STORAGE VOLUMES AND VOLUME IDs

Disks of all types are called storage volumes. A storage
volume is said to be on-line when it is placed correctly in
a drive. The Filer has an activity called V(olumes which
shows you all the volumes that are on-line.

Volumes are assigned volume names. The same
characters that are valid for file names are valid for
volume names. However, a volume name may have at most
seven characters. Also, volume names are followed by a
colon, Here are some valid volume names.

Example Volume Names:

A.VOL:
1234567:
BACKUP1:

A storage volume can also be referred to by the
device number of the drive in which it is mounted. Most
computers that run the UCSD p-System have at least two
disk drives. These drives are assigned device numbers 4
and 5. If there are any additional drives, they are assigned
numbers starting at 9. Device numbers are preceded by a
number sign, Tt#TT, and usually followed by a colon.

146 The Operating System Chap. 4

Example Device Numbers:

#4:
#9

An asterisk, "*", can be used to indicate the system
disk (the disk you bootstrap with). A colon, ":", can be
used to indicate the default disk. The default disk is
covered in the next section.

The term volume ID is the generic term for volume
specification. It refers to a volume name, device number,
asterisk, colon, or empty volume specification (default disk).

NOTE: The information presented in this section is
summarized on the inside back cover of this book.

4.7 FILE SPECIFICATION

A file specification consists of a volume ID, a file name,
and a size specification. Any of these three may be
missing from the file specification. Taken together they
indicate a disk and a file on that disk. Here are some
samples:

Example File Specifications:

MY_VOL:PROGRAM.CODE
#5:LETTER.TEXT
*SYSTEM.PASCAL
DATA/BASE/2
NEWFILE[10]
#9:NEWFILE[*]
#4:
*

•

A volume name, by itself, should only be thought of as
a file specification in the context where the volume "acts"
like a file. This is the case when the volume is a source
or destination for a stream of information. In the context
where a volume "contains files," the term file specification
does not apply.

Sec. 4.7 File Specification 147

When you use a file name without the associated
volume ID, the file is assumed to reside on the default
disk (also known as the prefix volume). The default disk,
at least initially, is the system disk. You can designate
another disk as the default disk if you like. This can be
convenient. For example, here are some miscellaneous
p-System prompts. The responses all indicate files on the
disk BACKUP:

Execute what file ? BACKUP:A.PROG Eretl
Transfer what file ? BACKUP:FILE1,BACKUP:FILE2 Eretl
Compile what file ? BACKUP:TEST Eretl
List what vol ? BACKUP: Eretl

If the prefix disk is BACKUP:, you can more easily respond
to these prompts like this:

Execute what file ? A.PROG Eretl
Transfer what file ? FILE1,FILE2 Eretl
Compile what file ? TEST Eretl
List what vol ? : Eretl

You can change the default disk by using the FilerTs P(refix
activity. You can also change it using execution option
strings (which are described later).

Notice that a colon, by itself, stands for the default disk
(as shown in the last example prompt).

Using an asterisk, you can easily indicate the system disk
in this manner:

Execute what file ? * A/PROG Eretl
Edit what file ? *SONG-LYRIC Eretl
List what vol ? *Hretj

NOTE: The information presented in this section is
summarized on the inside back cover of this book.

148 The Operating System Chap. 4

4.8 THE ARRANGEMENT OF FILES ON A DISK

In order to effectively manage files, it is important to
understand how they are physically arranged on a disk.
You may want to move files around, add and remove them,
determine how much free space is left on a disk, and so
forth. If you have a good conceptual understanding of
what files look like on a disk, all of this is made easier.

At the beginning of every disk used by the p-System,
an area is set aside for the directory. The directory
contains information about the files that currently reside on
the disk. The name of each file, its size, location, and
several other pieces of information about each file are
stored in the directory. The FilerTs L(ist directory activity
displays this information for you.

A disk may optionally contain a duplicate directory.
A duplicate directory is a copy of the main directory which
can be kept as a backup in case the main directory is lost.
When you use the FilerTs Z(ero activity to initialize a disk,
you are asked if you want to maintain a duplicate
directory. If you elect to do so, all future updates to the
main directory will be recorded in the duplicate directory
as well. If the main directory is somehow lost, the
COPYDUPDIR utility (described in Chapter 6) can be used
to copy the duplicate directory into the main directoryTs
location on disk. The MARKDUPDIR utility (also described
in Chapter 6) is able to create a duplicate directory on a
disk if you didnTt initially do so using Z(ero.

The size of a file on a disk is measured in terms of
blocks. (As already mentioned, a block is 512 bytes.) A
file is always an integral number of blocks in length. The
size of a disk is also measured in blocks. (In fact, a disk
is sometimes called a blocked volume.) The first block on
a disk is block 0. The next are block 1, block 2, and so
forth. The highest number depends upon the storage
capacity of your disk. A file is always stored on disk as a
sequence of contiguous blocks. For example, a file that
covers blocks 32 through 40 would be 9 blocks long.

The directory resides in blocks 2 through 5. If you are
maintaining a duplicate directory, it resides in blocks 6

149 Sec. 4.8 The Arrangement of Files on a Disk

through 9. Blocks 0 and 1 are not used for files. On
system disks, those blocks often contain bootstrap code.

Figure 4.1 gives you an idea of how files are stored on
a disk. It shows a directory and several files:

4— DIRECTORY

< LETTER.TEXT (#1)

- PROGRAM.CODE (#2)

+—- UNUSED AREA

4-- POEM. TEXT (#3)

Figure 4.1

There may be unused disk space between files. The
FilerTs E(xtended list directory activity shows the files on
disk as well as the unused space that lies between them.
You may run into situations where it is desirable to move
all of the files on a disk as close together as they can be.
The Filers K(runch activity does this for you. The result
of using K(runch is that the unused space is consolidated
into one large area. This is convenient when a large area
is needed (to store a new file, for example).

On some computers, a portion of each disk is normally
inaccessible to the p-System. Special utilities must be used
to deal with areas of this type. For instance, an area at
the beginning of the disk is often reserved for bootstrap
code that wonTt fit in blocks 0 and 1. A utility (often
called "Booter”) is used to copy bootstrap code into this
area.

150 The Operating System Chap. 4

4.9 THE SYSTEM FILES

There are several special files that are important in using
the UCSD p-System. These are called system files. Some
system files are always required and must be on the system
disk. Others are only needed it you want to use the
particular feature that they offer. Most of the files in this
second group can reside on any on-line disk, but a few
must be on the system disk. Here are the standard system
files:

SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.INTERP
SYSTEM.FILER
SYSTEM.EDITOR
SYSTEM.COMPILER
SYSTEM.SYNTAX
SYSTEM. ASSMBLER
xxxx.OPCODES
xxxx.ERRORS
SYSTEM.LINKER
SYSTEM.LIBRARY
SYSTEM.STARTUP
SYSTEM.MENU
SYSTEM.WRK.TEXT
SYSTEM.WRK.CODE

The bulk of the UCSD p-System is contained in these
files and, in several cases, their functionality is beyond the
scope of this book. However, the following descriptions of
them should provide good reference material as well as give
you some idea of how the p-System is divided up into
several major components.

SYSTEM.PASCAL is the operating system. It is re¬
quired and must reside on the system disk.

SYSTEM.MISCINFO contains miscellaneous information
that the p-System needs so that it can correctly interface
with your hardware. Most of this information pertains to
your screen and keyboard. This file is required on the
system disk.

Sec. 4.9 The System Files 151

SYSTEM.INTERP is the p-machine emulator which is the
portion of the UCSD p-System which is specific to a
particular computer (such as an Osborne or an IBM Personal
Computer). On some computers this system file has
different names such as SYSTEM.PDP-11 or SYSTEM.IBM.
It is required on the system disk.

SYSTEM.FILER contains the Filer. The Filer manages
disk files and is covered in Chapter 6. This file is only
required when you want to use the Filer. It can reside on
any on-line volume.

SYSTEM.EDITOR contains the Editor. The Editor is
used to create human-readable text files. This system file
is only required when you want to use the Editor and it
can reside on any on-line volume. The Screen-oriented
Editor is described in Chapter 5. If you plan to use
ED VANCE (the advanced editor) or YALOE (the line
oriented editor), you need to rename the appropriate code
file SYSTEM.EDITOR. Chapter 8 contains some suggestions
concerning EDVANCE. You should consult Chapter 9 for
further reading suggestions concerning EDVANCE and
YALOE.

SYSTEM.COMPILER contains a compiler. This may be
the UCSD Pascal, BASIC, or FORTRAN compiler. It is
only required when you want to compile a program and may
reside on any on-line volume. Compilers are described later
in this chapter.

SYSTEM.SYNTAX contains Pascal compiler error
messages. These messages are displayed when the compiler
finds syntax errors in your program text. If
SYSTEM.SYNTAX is not available, you receive error
numbers (instead of error messages) and you must refer to a
list of compiler errors to see what the problem is. (Lists
of compiler errors for Pascal and FORTRAN is provided in
the "Syntax Errors” appendix.) Since this system file is
only a convenience, it is never required. However, it must
reside on the system disk if it is to be used.
(SYSTEM.SYNTAX should not be present on the system disk
if compilers other than Pascal are used.)

152 The Operating System Chap* 4

SYSTEM.ASSMBLER contains an assembler. Assemblers
work with machine-level languages and are briefly described
later in this chapter. This file is only required when you
want to assemble a file and it can be on any on-line
volume.

The xxxx.ERRORS and xxxx.OPCODES files are used by
the assemblers. The error file is an optional convenience.
It contains English error messages which the assemblers
display in place of error numbers. The opcodes file is
required by the assemblers. The lfxxxxTt is actually an
indication of a particular processor, for example:
Z80.ERRORS and Z80.OPCODES, 68OOO.ERRORS and
68OOO.OPCODES, and so forth. These files can be on any
on-line volume. (The 8086 assembler also requires the
80 87.FOPS file if the 8087 floating point processor is to be
used.)

SYSTEM.LINKER is the link editor. It is used to
combine two or more assembled code files into a single
code file. It can also combine assembled code files with
host compiled code files. The linker is briefly described
later in this chapter. It may reside on any on-line volume.

SYSTEM.LIBRARY contains separately compiled or
assembled code files that can be used by your programs.
There is a "long integer" package which allows your
programs to use numbers of up to 36 decimal digit
arithmetic. This package is usually contained in
SYSTEM.LIBRARY. Applications building blocks, such as
the Turtlegraphics unit, may reside here. Also, the special
input and output routines for FORTRAN and BASIC can be
here if you intend to use those languages.
SYSTEM.LIBRARY may also contain code that you write.
This file is only required if you want to use the routines
that are within it. It must be on the system disk in order
to be used. The section "Libraries and Units," below,
contains more information about SYSTEM.LIBRARY.

SYSTEM.STARTUP is an optional file that may contain
any executable program. This program is automatically
executed when the p-System is bootstrapped. This facility
can be used, for instance, to put a company logo on the

Sec, 4.9 The System Files 153

screen when the p-System is bootstrapped, (If this happens
on your computer and you don't want the logo to appear,
simply remove SYSTEM.STARTUP or change its name.)
SYSTEM.STARTUP must be on the system disk if it is to be
used.

SYSTEM.MENU is similar to SYSTEM.STARTUP. It may
contain any executable program and is executed whenever
the p-System is about to display the Command menu. This
file is optional, but must reside on the system disk if it is
to be used.

SYSTEM. WRK.TEXT and SYSTEM. WRK.CODE are the
temporary workfiles. Workfiles are described below. You
can create these two files when you use the Editor and
Compiler. When workfiles are in use, they always reside on
the system disk.

SYSTEM.LST.TEXT is the default destination for a
compiled or assembled listing. These listings are optionally
produced by the three compilers or the assemblers and
contain detailed information about the code created.

4.10 WORKFILES

The p-System has some special facilities to deal with
workfiles. Workfiles are convenient when you are
developing small programs.

The Editor is used to create the human readable form
of a program and store it on disk as a text file. One of
the p-System compilers then takes such a text file and
creates a corresponding code file that is suitable for
execution. Then X(ecute or R(un is used to actually run
the program.

When you are not using workfiles you must tell the
Editor what file you want to edit. You must also inform
the compiler what text file to compile and what code file
should be produced. And, if you want to run the program,
you must select X(ecute and again enter the name of the
same file. If you are constantly making small changes in

154 The Operating System Chap. 4

the Editor, recompiling, and rerunning a program, this can
amount to a lot of typing.

Using workfiles, all of this can be done with much less
typing. The Editor automatically reads a workfile into the
workspace. The compiler automatically compiles it and
gives the code file a standard name. And R(un
automatically executes that file. You can go through this
cycle of editing, compiling, and running as many times as
you want without ever having to enter the name of the file
that you are working with.

There are two kinds of workfiles: temporary workfiles
and permanent workfiles. Temporary workfiles may be
created from scratch but they may also be temporary
versions of existing permanent workfiles. The temporary
workfiles are:

SYSTEM.WRK.TEXT
SYSTEM.WRK.CODE
SYSTEM.LST. TEXT

SYSTEM.WRK.TEXT is created when you leave the Editor
by selecting Q(uit U(pdate. SYSTEM.WRK.CODE is created
by a compiler whenever you compile a workfile. Here is a
typical cycle that you might go through when workfiles are
used:

o Enter the Editor; modify the workspace

o From the Editor, select Q(uit U(pdate

o From the Command menu, select R(un

o See the results of your program running

o Repeat this cycle as many times as needed

Permanent workfiles (sometimes called "named"
workfiles) are similar to temporary workfiles. They consist
of a text file and/or code file (which correspond to
SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE). However,
they may have any valid file names that end with .TEXT or
.CODE.

Sec. 4.10 Work Files 155

It is possible to have permanent workfiles and
temporary workfiles at the same time. As we mentioned,
this means that the temporary workfiles are temporary
versions of the permanent workfiles. The Editor can make
a temporary version of a permanent text workfile. A
compiler can create a temporary version of a permanent
code workfile. The Filer can convert temporary workfiles
to permanent status (removing the old permanent version if
necessary).

The Filer has four activities that are related to
workfiles: G(et, S(ave, N(ew, and W(hat. G(et allows you
to designate an "ordinary" text and/or code file as the
permanent workfile. N(ew clears the workfile altogether.
S(ave changes temporary workfiles to permanent workfiles.
W(hat tells you what the name of your workfile is (if it has
one) and whether or not it has been saved.

For some experience with workfiles you should work
with Chapter 3. The relevant Filer activities are covered
in Chapter 6.

4.11 COMMUNICATION VOLUMES

There are two types of volumes in the p-System
environment: storage volumes and communication volumes.
A volume is any sort of computer peripheral to which (or
from which) information can be transferred. The console
(screen and keyboard) is considered to be a volume. So is
the printer. These volumes are communication volumes.
Disks, as mentioned earlier, are storage volumes.

The distinction is that communication volumes do not
store information. A printer, for example, accepts what is
sent to it and prints it. But, a storage volume actually
saves the information (relatively) permanently and allows
later access to it.

Communication volumes have names like storage volumes
except that they are standard names (unlike the names that
you give to your disks). Here are the communication
volumes usually available with the p-System.

156 The Operating System Chap. 4

Communication Volume Device Number

CONSOLE: #1:
SYSTERM: #2:
PRINTER: #6:
REMIN: #7:
REMOUT: #8:

CONSOLE: and SYSTERM: are very similar. Both
refer to the screen/keyboard. CONSOLE: echoes the
characters that are typed on the screen. SYSTERM: (which
stands for system terminal) does not echo those characters.
PRINTER:, of course, is the printer. REMIN: and REMOUT:
refer to the serial communication line (which can be used,
for instance, to communicate with distant data sources over
the phone). It is possible for you to have many more serial
devices than these if the p-System on your computer allows
it.

The device numbers can be used in place of the
corresponding volume name. For example, you can use the
FilerTs Transfer activity to display a text file on the
screen with either of these responses:

Transfer what file ? A.POEM.TEXT I ret I
To where ? CONSOLE: It ret I

Transfer what file ? A.POEM.TEXT gretj
To where ? : Iret]}

As mentioned earlier, a storage volume is on-line when
it is accessible to the p-System. A communication volume is
on-line when the peripheral device (console or printer, for
instance) is properly connected and turned on. The FilerTs
V(olumes activity displays which volumes (both storage and
communication) are currently on-line.

Sec. 4.12 Subsidiary Volumes

4.12 SUBSIDIARY VOLUMES

157

If the p-System that you are using is version IV.l, you can
use the subsidiary volumes facility. A subsidiary volume is
a regular disk file which contains a directory and is treated
as if it was a separate disk altogether.

Subsidiary volumes are accessed directly just like any
other volume. You donTt have to specify two levels of
volume names to access files on a subsidiary volume.

Subsidiary volumes are especially useful when dealing
with large capacity disks. By using subsidiary volumes,
such disks can be divided into logical portions. More
importantly, the p-System is able to store many more files
than it otherwise could on such disks. On any given
volume, the p-System is able to store 77 files, which is too
few to make good use of a large capacity disk. However,
each subsidiary volume is able to hold 77 files of its own.
This means that you could conceivably have as many as 77
times 77 files on a disk.

In Chapter 6 there is an entire section that deals with
subsidiary volumes, so we won’t go into any further detail
concerning them here.

4.13 LIBRARIES AND UNITS

The p-System allows you to separately prepare pieces of
code which can later function together as a unified
program. This is referred to as separate compilation
when you use a compiler to produce the code. (An
assembler can also be Used as we discuss later.) The
separately compiled portions of a program are called units.

A program may use several units. Units, themselves,
may use other units. The program or unit which uses other
units is called the client. If it is a program, it may also
be called a host. You can combine a host program with all
of its units into a single executable code file if you wish.

Alternatively, you can leave the units in one or more
disk files called libraries. If the p-System is correctly

158 The Operating System Chap. 4

informed about the whereabouts of these libraries, it can
find all of the necessary units when a program is executed.
You might want to use libraries (instead of placing all of
units the directly into the hostTs file) if the units are used
by several clients. In this way, the disk space required by
the units is not duplicated for every program or unit which
uses them.

The main library is called SYSTEM.LIBRARY and must
be on the system disk if it is to be used. Any units that
you place in SYSTEM.LIBRARY are available for clients to
use. A unit can be inserted into SYSTEM.LIBRARY (or
into a client program or unit) using the Library utility
which is briefly discussed in Chapter 8.

It may be convenient for you to have several libraries.
To designate a code file as a library, you should use a
library text file. A library text file is an ordinary text
file that contains the names of code files which you want
to designate as libraries. The standard library text file is
USERLIB.TEXT and should reside on the system disk. For
example, you can use the Editor to place the following
lines in a text file:

INIT. UNITS. CODE
MY.LIB
#5:MORE.UNITS.CODE
#5:SYSTEM.LIBRARY

You can then name that file USERLIB.TEXT and place it
on the system disk. The four files are designated as
libraries, along with the standard SYSTEM.LIBRARY on the
system disk. The .CODE suffix is appended to these names
if necessary.

It is possible to use other library text files besides
USERLIB.TEXT. This can be done with execution option
strings which are described under the X(ecute activity,
below.

The assembler can also separately produce portions of a
host program or unit. These portions are known as
external routines. External routines must be bound directly

Sec. 4.13 Libraries and Units 15 9

into the client program or unit that needs them. The
L(inker, which is briefly described in this chapter, is used
to do this.

4.14 REDIRECTION

Normally, the p-System is used by a person typing on a
keyboard and watching the screen. However, it is possible
to redirect the p-SystemTs input (to come from someplace
other than the keyboard) and/or its output (to go to
someplace other than the screen).

You can, for example, create a script file which
contains characters that you would normally type in
response to p-System prompts and menus. If you then
redirect the p-SystemTs input to that file, it reads those
characters one at a time and selects the corresponding
activities. There are many instances in which repetitive
tasks can be automated in this manner.

The X(ecute activity is used to redirect input and
output. This is accomplished using a facility called
execution option strings (covered under X(ecute, below).

You can use the M(onitor activity to assist you in
creating script files. It causes the p-System to monitor and
store away the keys that you type from the keyboard. The
resulting script file can be used by X(ecute to duplicate
those actions. M(onitor is also described below.

4.15 ERROR MESSAGES

Error messages are displayed by the p-System and its
various components under certain circumstances. For
example, you may inadvertently take a disk out of its drive
before some necessary code is read from it into main
memory. Or, a program that you are compiling might not
be syntactically correct. There are many other possibilities
as well.

Syntax errors for the compilers along with the
operating system, Filer, and Editor error messages are listed

160 The Operating System Chap. 4

in the appendices to this book. There are two types of
operating system errors that are important enough to
introduce here.

The p-System often needs to read code from a disk file
into main memory. If you have removed a disk when code
is needed from it, you receive a message like this (usually
on the bottom line of the screen):

■

Need segment MYSEG: Put volume MYDISK In unit 5 then type <space>
mm

In this example, MYSEG is the name of the code segment
that is required. MYDISK is the name of the volume that
contains that code. And 5 refers to device #5:, where the
disk should be placed. Usually, you donTt need to concern
yourself about the code segment name. Just place the disk
in the indicated drive and press Cspacell.

If an error occurs while a program is running, the
operating system produces an execution error message. If,
for example, a program attempts to divide a number by
zero (which is an illegal operation), an error similar to this
appears:

Divide by zero — Seg MYSEG P# 3 0# 125 <space> continues

The pieces of information displayed in this message show
where the error occured in the program and are called
error coordinates. If this kind of error occurs, you should
note the error coordinates and then type [[space!. The
p-System reinitializes itself and displays the Command menu.
Unless you are debugging the program, the error coordinates
are probably not important to you. However, they will be
important to the supplier or developer of the program.

Sec, 4.16 Notational Conventions 161

4.16 NOTATIONAL CONVENTIONS

There are several notational conventions used in Part 2 of
this book for referring to volumes and files. The following
generic terms, with hyphens, are used:

FILE-SPEC
FILE-NAME
VOLUME-ID
VOLUME-NAME:
SIZE-SPEC

FILE-SPEC refers to "file specification," and SIZE-SPEC
refers to "size specification." These generic terms may
appear together, like this:

VOLUME-NAME:FILE-NAME
FILE-NAME SIZE-SPEC

When more than one file or volume are referred to,
self-explanatory conventions such as these are used:

FILE-NAME-1
FILE-NAME-2

etc.

NEW-VOLUME-ID
OLD-VOLUME-ID

Multiple number signs are used to indicate a
numeric value:

Scan for ### blocks (Y/N) ?
Block ## is bad

Prompt and menu responses are underlined and may
contain extraneous words such as "or":

Execute what file ? FILE-SPEC IretJ
Throw away current workflle ? Y or N

162 The Operating System Chap. 4

Some prompts are shown with several responses. This
means that you can respond in any of the indicated ways:

4.17 THE COMMAND MENU

Whenever the p-System is booted or initialized, the
Command menu is displayed. Also, whenever a program
finishes execution, or a p-System component (such as the
Editor or Filer) is exited, this menu reappears. It provides
a platform from which all programs, including the major
p-System components, may be selected. The Command menu
looks like this:

Command: E(dlt# R(un# F(lle» C(omp, LUnk# X(ecute» A(ssem» D(ebug»? C 1

Typing IT?" displays the rest of of it:

Command: H(alt, Initialize, U(ser restart, M(onltor []

The activities on this menu are covered in this section
in alphabetical order. This section is intended as reference
material as well as general interest reading.

Sec. 4.17 The Command Menu: Assemble 163

A(ssemble

An assembler translates the assembly language for a
particular microprocessor into machine code consisting of
the basic computer instructions. These instructions do such
things as add two numbers, store the result in a memory
location, compare two numbers, and so forth.

The high-level languages that the compilers accept have
more elegant and powerful capabilities. This means that
programming in Pascal, for example, can be a lot less
tedious than programming in assembly language. There are
two reasons why assembly language is attractive to use in
certain circumstances, however.

The first is that machine-level code executes faster
than the p-code which is a compiler’s output. P-code is a
powerful and compact "pseudo code" that can run on any
computer on which the p-System is installed. It is executed
by the p-machine emulator (which is written in the assembly
language of the host computer). Because of this emulation
approach, p-code doesn’t run as fast as machine-level code.
Therefore, you may want to write time critical portions of
a program in assembly language.

The second attractive attribute of assembly language is
that it is very fundamentally close to the computer
hardware on which it runs. One implication of this is that
you can perform low-level machine-specific tasks which are
much more difficult (if even possible) from high-level
languages. Plus, assembly language can run with or without
the underlying p-System because it is directly executed by
the processor. A drawback of machine-level code is that it
is specific to a particular processor. This means, for
example, that you can’t move the assembler’s output for an
8086-iased computer to a 68000-based computer.

164 The Operating System Chap. 4

In order to use an Assembler, its code file must be
named SYSTEM. ASSMBLER (notice the missing "E") and
placed on-line. Also, there is an opcodes file and an errors
file that must be on-line. These have names that depend
upon the processor you are using (e.g., 8086.OPCODES and
8086.ERRORS, Z80.OPCODES and Z80.ERRORS, and so
forth).

When you select Assemble, you are asked what file to
assemble. You should enter the name of the text file
which contains your assembly language source. You should
not include the ".TEXT" because that suffix is assumed:

Assemble what text ? MY.PROC (EretJ

This response causes the file MY.PROC.TEXT to be
assembled. The next prompt asks you to give the name
that you want the code file to have. You should not
include the ".CODE" in your response:

To what code file ? MY.PROC EretlD

This response causes the output file to be called
MY.PROC.CODE. If, instead, you answer this prompt with
a dollar sign:

To what code file ? $ I ret 31

the code file is given the name which corresponds to the
text file. In this case it is still MY.PROC.CODE.

You should be careful if you enter the text file with a
volume name, such as VOL2:MY.PROC, and then use the
dollar sign for the code file. In this case, the code file is
not necessarily placed on the same volume as the text file.
Rather, it is placed on the prefixed volume. For example,
if the prefix is VOL1:, responding like this:

Sec. 4.17 The Command Menu: Assemble 165

Assemble what text ? V0L2;MY.PR0C gretj
To what code file ? $ Iretl

creates the code file VOLlsMY.PROC.CODE.

Next the Assembler prompts you for a listing file:

Output file for assembled listing (<cr> for none)

An assembled listing shows your original text along with the
machine code that was generated and other information.
The details of assembled listings are beyond the scope of
this book. In response to this prompt, you can enter a file
specification in which case the assembled listing is placed
in that file. If you enter CONSOLE: or PRINTER:, the
listing is displayed or printed, respectively. If you simply
type ttretl, no listing is produced.

As the assembling process proceeds, dots are displayed
on the screen. Each dot represents one line of your source
text.

The resulting code file is generally linked, using the
Linker, to a high level host program. Unless this is done,
the assembly language code canTt be executed within the
p-System environment. However, it is possible to use the
Compress utility on the assembled code file. This modifies
your code file so that it can run without the underlying
p-System. It is also possible to link assembled code files
together. (You should consult Chapter 9 for further
reading suggestions concerning all of these topics.)

166 The Operating System Chap. 4

C(ompile

C(ompile starts a compiler. The p-System has compilers for
Pascal, BASIC, and FORTRAN. You should make sure that
the compiler that you want to use is named
SYSTEM.COMPILER and resides on an on-line volume. When
you are using BASIC or FORTRAN, you also need to have
the runtime support package in a library. Chapter 3,
sections 3.4 and 3.5, describe the steps you need to take in
order to use Pascal or FORTRAN.

If you do not have a workfile, you are asked what file
you want to compile. This is assumed to be a text file so
you should not include ".TEXT" in your response. For
instance:

Compile what file ? MY.PROG EretJ

compiles the file MY.PROG.TEXT.

Next you are asked what you would like to call the
code file that is produced. This is assumed to be a code
file, so you should not include the .CODE suffix in your
response. For example:

To what code file ? MY.PROG Eretfl

causes the resulting file to be called MY.PROG.CODE. If
you answer this prompt with a dollar sign like this:

To what code file ? $ Eretll

the resulting code file is given the name that corresponds
to the text file, in this case MY.PROG.CODE. Using a

Sec. 4.17 The Command Menu: C(ompile 167

dollar sign not only reduces typing, it saves you from
possibly making a confusing mistake by entering an
incorrect name, such as MY.PRUG.

You should be careful if you enter the text file with a
volume name, such as VOL2:MY.PROC, and then use the
dollar sign for the code file. In this case, the code file is
not necessarily placed on the same volume as the text file.
Rather, it is placed on the prefixed volume. For example,
if the prefix is VOL1:, responding like this:

if'

Comp 1 le what text ? V0L2:MY.PR0G IretJ
To what code file ? $ IretJ

creates the code file VOLl:MY.PROG.CODE.

If you have a workfile, neither of these two prompts is
displayed. Instead, the p-System assumes that you want to
compile the workfile and that you want the code file to be
called SYSTEM.WRK.CODE (the temporary code workfile).

Next, you are asked if you want a listing of the
compiled text:

Output file for compiled listing? (<cr> for none)

If you simply type Iretl, no compiled listing is
produced. You can enter a disk file name, in which case a
file is created on disk which contains the listing. You can
also answer this prompt with a communication volume such
as PRINTER: or CONSOLE:. These two responses send the
listing to the printer or the screen respectively. Here is
an example of a Pascal compiled listing:

168 The Operating System Chap. 4

Pascal Compiler IV.
. , . • . '

1 2 1 sd
2 2 1 :d
3 2 1 sd
4 2 1:0
5 2 1:0
6
7

2 1:1
2 1:2

8 2 1:3
9 2 1:3

10 2 1:3
11 2 1:3
12 2 1:3
13 2 1:3
14 2 1:2
15 2 :0

End of Compilation.

1 version 1/ 1/83

15

Program Us+Ing_Example;
Var One# Two# Three: Integer;

An_Array: Packed Array CO..2553 Of
Begin
{This Is an example of a compiled listing)
For One:*! To 200 Do

Begin

*
111

Two:=0ne*0ne;
Three:=Two+Two;
An^ArrayCOne]:=Chr((Two+Three) Mod 127);
If~An Array C0ne3 = Chr(One)

Then Wrlteln (»That»»s Amazing P)
Else Wrlteln <*That"s Typical!’);

End
End.

The information contained in this listing is useful for
debugging and analysis purposes. It is beyond the scope of
this book, however.

The compiler makes two passes through the Pascal text.
As the compiler does its first pass, dots are displayed on
the screen for every line in the text. During the second
pass dots are displayed for each major segment of your
program. Also, during the second pass, the compiled listing
is produced if you indicate that you want one.

If you intend to do a substantial amount of
programming, we suggest that you consult Chapter 9 for
further reading suggestions.

Sec. 4.17 The Command Menu: D(ebug 169

D(ebug

If you are going to develop programs with the UCSD
p-System, the Debugger is a tool that can help you to
diagnose errors in them.

With it, you can stop a running program at any point
and look closely at what is going on. You can allow the
program to continue for a while and then stop it again. Or
you can step very slowly through the code. There are
several other operations that the Debugger can perform
which help you to determine what might be causing your
program to malfunction.

When you enter the Debugger, the following two lines
appear:

The Debugger is the only major p-System component that
does not use menus or prompts. This is because any such
displays could interfere with the output of the program
being debugged. In order to return to the Command menu
from here, you should select the invisible Q(uit activity.

It is not our intention to explain very much about the
Debugger in this book although there is a section in
Chapter 8 which gives a little more information about it.
If you want to use the Debugger, please see Chapter 9 for
further reading.

170 The Operating System Chap. 4

E(dit

Selecting E(dit starts the Editor. The Editor is used to
work with text files. You can create a new text file or
edit an existing one. When you select E(dit you are usually
prompted:

This prompt is asking you what file you want to edit. It is
covered in Chapter 5. When you have correctly answered
it and entered the Editor, the Edit menu is displayed:

>Edl+: A(djus+ C(opy D(el F(«nd Knsert J(ump K(oi M(argln P(age ? C 3

All of the Editor activities are described in Chapter 5.

Sec. 4.17 The Command Menu: F(ile 171

F(ile

Selecting F(ile starts the Filer. ItTs menu looks like this:

Filer: G(e+» S(ave, W(hat» N(ew# Udlr# RCem* C(hng» T<rans# 0(ate»? C 3

The Filer is used to work with disk files, storage
volumes, and communication volumes. It is described in
Chapter 6.

To return to the Command menu, select Q(uit.

172 The Operating System Chap, 4

H(ait

H(alt terminates all p-System activity. If you want to use
the p-System after you have halted it, you need to reboot.

Sec, 4,17 The Command Menu: Initialize 173

Initialize

This activity causes the entire p-System to "reinitialize"
itself. This resets the p-System !s status to very nearly
what it is when you first start it up. However, if you
have changed the prefix, that change remains in effect.
Also, if you have redirected any I/O, it remains redirected.

174 The Operating System Chap. 4

L(ink

Selecting L(ink starts the Linker. The Linker is used to
combine two or more assembled code files into a single
code file. It also links assembled code files to high-level
language hosts.

If you need to do a substantial amount of assembly
language programming, it may be very convenient to
separately assemble the pieces and then link them together.

If you want to execute assembly language code within
the p-System environment, it is required that you link the
code to a high-level host. Only programs (which are
written in high-level languages) can be X(ecuted Command
menu.

The following display is an example of the prompts that
appear when the Linker is used:

Host file ? MY.HOST EretJ
Opening MYDISK:MY.HOST.CODE
Lib file ? AN.ASSM Href]]
Opening MYDISK:AN.ASSM.CODE
Lib file ? \.MORE tretl
Opening MYDISKrl.MORE.CODE
Lib file ? IE ret I
Map name ? DlretlD
Reading MYHOST
Reading ANASSEM
Reading ONEMORE
Output file ? LINKED.UP.CODE lEretU
Linking MYHOST #2

Copying proc ANASSEM
Copying proc ONEMORE

The first prompt asks for a host file. (This is usually
the program or unit that uses an assembled routine.)

Then a recurring prompt asks you for as many
assembled library files, or "lib" files, as you need. When

Sec. 4.17 The Command Menu: L(ink 175

you have entered all of them, you should type an empty
ttretl in response to this prompt.

The next prompt asks for a map file name. If you
enter the name of a text file, internal details of the
linkage will be placed there.

The Linker then displays the names of the files that it
is linking as it reads them.

Next, you are asked for an output file.

Finally, you are told the names of the routines as they
are linked together.

176 The Operating System Chap. 4

M(onitor

The M(onitor activity helps you to automate repetitive
operations with the p-System. It assists you in creating
script files which can serve as a source for redirected
input. (For more information on redirection, see
Section 4.14, page 159. Execution option strings are used to
perform redirection as described under X(ecute, below.)

Script files contain a series of characters that you
would normally enter at the keyboard. When the p-System *s
input, or a programs input, is redirected to a script file,
that file becomes the source of the characters that you
would otherwise have to type. Script files can be very
convenient for long and repetitive sequences of operations.
A simple script file might contain the characters:

FV

If you redirect the p-System Ts input to this file, it would
enter the Filer, T,FTt, and select V(olumes, "V".

M(onitor can be used to place the p-System into a mode
where it keeps track of what you are typing at the
keyboard. All keys that you type, including special keys,
are placed into a script file automatically.

When you select M(onitor, this menu appears:

Monitor: B(egln, E(nd» A(bort# S(uspend» R(esume

In order to start monitoring, you must first select
B(egin. B(egin requests that you enter the name of the
script file that you want to create.

Sec. 4.17 The Command Menu: M(onitor 177

The next thing that you should do is select R(esume.
R(esume returns you to the Command menu. Any keys you
type after that are stored in the script file.

If you are finished recording keyboard input, enter the
M(onitor again and select E(nd. E(nd closes the script file
so that it can now be used as a source of redirected input.
After using E(nd, you should use R(esume to return to the
Command menu.

If you want to temporarily halt the monitoring process,
select S(uspend. After you do this, you are returned to the
Command menu. However, nothing that you type is
recorded. Later you can re-enter the M(onitor and use
K(esume to continue monitoring from where you left off.

A(bort causes the script file that you are creating to
be thrown away.

178 The Operating System Chap. 4

R(un

R(un is used either to execute, or to compile and execute a
program. The main purpose of R(un is to assist you in
using workfiles. It is convenient in this situation because
it saves you from excess typing.

If you have a code workfile, selecting R(un
automatically executes it. If you only have a text
workfile, R(un compiles it and then executes it. There is a
slight twist to this, however: if you have just created a
new version of the text workfile (by using Q(uit U(pdate
from the Editor), R(un compiles and executes it even if an
old version of the code workfile exists.

If you do not have a workfile, R(un executes the most
recently compiled code file. If you havenTt compiled a file
since booting the p-System, R(un asks for a text file to
compile and execute.

Sec. 4.17 The Command Menu: U(ser Restart 179

U(ser Restart

U(ser restart is used to restart any program that just
completed execution. If, for example, you have just
X(ecuted a program like this:

Execute what file? MY.PROG gretl

and the Command menu has reappeared, you can now run it
again by simply typing ,fUTt. This is convenient when you
need to run the same program several times.

There are some programs that take a relatively long
time to begin running because of associate time. This is
the time that it takes the p-System to collect information
about the units that a program uses. When programs are
restarted with U(ser restart, association time is not a
factor because the units are still "associated.” This means
that programs which use a large number of units start
noticeably quicker with U(ser-restart. (The Quickstart
utility, introduced in Chapter 8, provides a mechanism for
reducing associate time in general.)

180 The Operating System Chap. 4

X(ecute

Programs that are ready to run may be started by selecting
X(ecute. This activity prompts you:

Execute what ff

You should enter the name of an executable code file. Do
not include the .CODE suffix. For example, if you want to
execute a file called MY.PROG.CODE, respond to the
X(ecute prompt like this:

Execute what file ? MY.PROG Eretl

It is possible to respond to this prompt with the entire
name of a code file, if you add a period, ".", to the end of
the file name:

Execute what file? MY.PROG.CODE. IretJ

This can be useful since a code fileTs name is not
required to end with .CODE. For example, you can
X(ecute SYSTEM.FILER like this:

Execute what fiie ? SYSTEM.FILER. IretJ

If you type in the ".CODE" without a period, the file
wonTt be found or executed. For example, if you enter
"PROG.CODE", X(ecute tries to find the file
"PROG.CODE.CODE" which is not what you intended.

It is possible to do several other useful things with
X(ecute by using execution option strings. An execution

Sec. 4.17 The Command Menu: X(ecute 181

option string is an optional part of your response to the
"Execute what file ?Tt prompt. For example:

Execute what file ? I = SCRIPT.TEXT tret!

is a valid way to use the "I" option, as described below.

Execution option strings were mentioned in the section
on redirection earlier in this chapter (see
Section 4.14, page 159). Using them you can redirect the
p-System’s input and output. You can also redirect a
particular program’s input and output. There are several
other tasks that execution option strings can perform.
Here is a summary of the six execution options:

Execution Action:
Option:

1= This option can be followed by a
quoted string or a file
specification. (The file
specification could indicate a script
file or a communication volume
such as REMIN:). The p-System’s
input is redirected to come from
that input source instead of the
keyboard.

0= This option is followed by a file
specification (which could indicate
a disk file or a communication
volume such as PRINTER:). The
p-Systemfs output is sent to that
destination instead of the screen.

182

PI=

P0=

The Operating System Chap. 4

This option can be followed by a
quoted string or a file
specification. (The file
specification could indicate a script
file or a communication volume,
such as REMIN:). The programs
input is redirected to come from
that input source instead of the
keyboard.

This option is followed by a file
specification (which could indicate
a disk file or a communication
volume such as PRINTER:). The
program's output is redirected to
that destination.

This option is followed by a volume
ID for a storage volume. It sets
the prefix to the indicated volume
ID. This is the same operation
performed by the Filer's P(refix
activity. You must not include the
colon after the volume ID.

This option is followed by a text
file specification. The .TEXT
suffix is optional. The indicated
text file is designated as the
library text file (see
Section 4.13, page 157).

Any execution options which you use should appear
after the programs file specification. You donTt have to
include a program if you don't want to execute one. You
can just use X(ecute to perform execution options by
themselves.

If you use more than one execution option, you should
separate them using space characters. The order in which
you use them does not matter as long as the program name
is first (if you are executing one). The prefix option,
however, is always processed before anything else.

Sec, 4.17 The Command Menu: X(ecute 183

Here are some examples:

Execute what file ? I=MY.SCRIPT.TEXT IretJ

This response redirects the p-SystemTs input to come
from your file MY.SCRIPT.TEXT. If this file contains the
characters:

FL#5:|IretIl

then this causes the p-System to enter the Filer, fTF!l,
select L(ist, TtLM, and list the directory of the disk in drive
#5, IT#5:[[ret]]Tl. When all the characters from the input file
have been read, standard input from the keyboard is
resumed.

Execute what file ? I="FL#5:," OgPRINTER: tret!

Here, the p-System !s input is redirected to a string
which, causes it to enter the Filer and list the directory of
the disk in drive #5. The comma within the string is
interpreted as ttretU.

In addition, the p-System Ts output is redirected to the
printer. When this is done, all prompts, menus, and other
displays are printed rather than displayed on the screen.
This means that the FilerTs menu, the L(ist directory prompt
and response, and the directory listing of the disk in drive
are all printed rather than displayed on the screen. This
handling of output continues until another redirection
command makes a change.

184 The Operating System Chap. 4

Execute what file ? MY.PROG P=#5 L»USERL1B2 PO*PRINTER: IretJ

In this example, the file #5:MY.PROG.CODE is
executed. Before that program actually starts, however,
the following execution options are performed:

The prefix is changed to #5:.

The library text file is changed to #5:USERLIB2.TEXT.

The programs output is redirected to the printer. This
means that everything the program normally writes to the
screen is printed instead. After the program finishes,
output resumes to the console screen.

THE EDITOR

5.1 INTRODUCTION

One area in which computers are extremely valuable is text
editing. With a typewriter you can produce text on paper,
but it canft be rearranged, corrected, and printed out
again. An editor can save the text you create on disk.
Later that text can be printed, or, if it is a program,
compiled.

There are three editors available with the p-System.
The first is the Screen-oriented Editor which is described in
this chapter. The second is the advanced editor,
EDVANCE, which is similar to the Screen-oriented Editor,
but contains several more sophisticated features. EDVANCE
is introduced in Chapter 8. The third editor is called
YALOE (Yet Another Line Oriented Editor). It is meant
for computers that have a hard copy output instead of a
screen. YALOE is not covered in this book.

185

186 The Editor Chap. 5

We introduced the Screen-oriented Editor in the first
part of this book. In this chapter we cover the Editor and
its activities more thoroughly and systematically.

We have laid out this chapter so that, after you read it
through, you can use it as a reference guide in the future.
It begins with a quick overview of the Editor. Next, the
general Editor facilities are introduced. Finally, the items
on the Editor menu are covered in detail.

5.2 OVERVIEW OF THE EDITOR

The Editor works with text files. Text files always have
names that end with .TEXT. Here are some examples:

POEM.TEXT
PROPOSAL.TEXT
SYSTEM.WRK.TEXT

When an editing session begins, you may either create a
new file from scratch, or you may edit an existing file. In
either case, the copy of the file that you are editing exists
in main memory and is called your workspace. The amount
of main memory that you have determines the maximum size
of your workspace. When you are finished editing the
workspace, you can write it to disk. Alternatively, you can
leave the Editor without saving the workspace on disk.

If you are editing an existing file and you store your
workspace on disk using its original name, the old copy of
the file is removed (because you can't have two files with
the same name on the same volume).

During an edit session, the portion of your workspace
that is displayed on the screen is said to be in the
window. This window may be moved forward (toward the
end of the workspace) or backward. In this way you can
view the entire contents of your workspace, although not
all at one time. (See Figure 3.1.) In order to move the
window, you need to move the cursor. This is done with
the cursor moving keys and activities.

Sec. 5.2 Overview of the Editor 187

The Editor may be used in various ways to insert,
delete, overwrite, copy, and locate text. It can also
automatically rearrange the words in a paragraph to make
the lines fit within the margins. The editing environment
can be set so the Editor is especially suited for creating
line-oriented text or paragraph-oriented text.

In order to use the Editor, the file SYSTEM.EDITOR
must be present on an on-line volume. This file must
contain the Screen-oriented Editor.

5.3 CURSOR MOVEMENT

During an editing session, the cursor may be moved to any
part of your workspace by typing certain keys, or by using
the appropriate Editor activities. You may examine and/or
change text anywhere in your workspace by first moving
the cursor to the location of that text.

The cursor movement keys are:

[[space]]
lbs]]
EretJ
CtabB
ttupB
ttdownl
Heft]]
[fright]]
1=1

The cursor movement activities are:

P(age
J(ump
F(ind

Before we describe these keys and activities, there are
a couple of general concepts that need to be introduced.
These are the direction indicator and the repeat factor.

188 The Editor Chap. 5

Direction Indicator

The direction indicator determines whether the cursor is
moved in the forward direction, or in the backward
direction for certain keys and activities. For example,
typing [[space]] normally moves the cursor one place to the
right, as on a typewriter. If the direction indicator is
reversed, however, typing [[space]] moves the cursor to the
left (which is also what Ibsl does).

You can tell what the direction is by looking at the
character in the upper left hand corner of the screen. If
it is a right angle bracket, ">Tt, then the direction is
forward. If it is a left angle bracket, T,<Tt, then the
direction is backward. You can think of the angle bracket
as an arrow pointing forward or backward.

In order to change the direction indicator, type the
right angle bracket to make it forward or the left angle
bracket to make it backward. The period, TT.,T, and plus
sign, "+n, also set the direction indicator forward.
Similarly, the comma, n,T!, and minus sign, also set the
direction indicator backward.

The direction indicator affects [[space]], [[ret]], [[tab]],
P(age, F(ind, and R(eplace.

Repeat Factor

A repeat factor is a number that you may type just before
using a cursor movement key or activity. The cursor
movement is then performed that many times. For example,
if you type "3" before using [[space]], the cursor moves
three spaces instead of just one.

The repeat factor is always 1 unless you cause it to be
otherwise. You can use repeat factors in the range 1 to
9999. You can also use a slash, ”/TT> to indicate the
infinite repeat factor. The infinite repeat factor causes
the cursor movement to be repeated as many times as is
possible in the workspace. For example, typing ”/" followed
by [[down]] moves the cursor down to the very last line in

Sec* 5*3 Cursor Movement 189

the workspace. As soon as you have used the cursor
movement key or activity, the repeat factor returns to 1.

All cursor movement keys except are affected by
the repeat factor. P(age, J(ump, F(ind, and R(eplace are
affected as well. In addition, when the cursor movement
keys are used within A(djust, D(elete, and K(olumn, the
repeat factor applies.

Another way to repeat cursor movement on some
computers is to hold down [[repeat]] and the cursor
movement key at the same time. As long as both keys are
pressed down, the cursor movement is repeated. For
example, holding down [[repeat]] and [[up]] causes the cursor
to keep moving upward until the keys are released (or the
first line of the workspace is reached).

On other computers, this sort of repeated cursor
movement is accomplished by simply holding down the cursor
movement key for a longer than normal length of time,
generally over one second. For example, holding down
[[space]] for less than a second moves the cursor only one
space. Holding it down for more than a second causes the
cursor to continue moving until the space bar is released.

Cursor Movement Keys

This section describes the cursor movement keys. The
following table summarizes their actions:

Key Cursor Movement

[[space]] One column right
lbs]] One column left
[ret]] To beginning of line below
[[tab]] To next tab stop
lupl Up one line
[[down]] Down one line
[[left]] One column left
[[right]] One column right
i=i To beginning of last

I(nsert, F(ind, or R(eplace

190 The Editor Chap. 5

Espace!

Ebs!

Eret!

The space bar moves the cursor one
position to the right as on a
typewriter. At the end of a line it
does an automatic carriage return. A
repeat factor may be used to move
several spaces at a time. If the
direction indicator is set backwards,
the space bar moves the cursor to the
left. Generally, Espace! is used to
move only a few characters from the
present cursor position. If you need
to move further, [[tab! is often a
better key to use.

This key moves the cursor one position
to the left. If the cursor is already
occupying the first position on the
line, it is moved to the last position
on the line above. A repeat factor
may be used with Ebs!. Like [[space!,
Ebs! is usually most effective if you
are only going to move the cursor a
few places.

If you are at the end of a long line
and want to move quickly to the
beginning, it is easier to type Eret!
followed by Eup! (or Eup! followed by
Eret!) than it is to use Ebs! several
times. Several backward Etab!s can
also be used to move quickly to the
left.

This key acts like a carriage return on
a typewriter. It moves the cursor to
the beginning of the line below. If
the direction indicator is backwards,
Eret! moves the cursor to the
beginning of the line above. Several
Eret!s can be done by using a repeat
factor. However, if you need to do
quite a few (say 20 or 30) it is usually
better to use P(age.

Sec. 5.3 Cursor Movement 191

[[tab]] This key moves the cursor to the right
until it reaches the next tab stop,
again in similar fashion to a
typewriter. Tab stops are normally set
at every eighth space across a line.
However, you can set them wherever
you want by using the S(et tabstops
option described under S(et
Environment later in this chapter.

If the direction indicator is set
backwards, the cursor is moved to the
next tab stop on the left. A repeat
factor may be used to tab several
stops beyond the current cursor
position.

Arrow Keys The lupll, lldown]], ffleftH, and Bright!
keys move the cursor in the indicated
directions. The arrow keys always
move the cursor in the direction that
they indicate; they are not affected by
the direction indicator. They are,
however, affected by the repeat
factor.

Sometimes Hup! or [[down! can seem to
move the cursor noff the text,11 that
is, to a position that is really beyond
the left or right margins of the
current line. In this case, the cursor
may seem to jump around when you
use the next cursor movement key. To
understand this "jumping” you should
realize that the cursor is not logically
located beyond the margin. (It is
either at the first character or the
last character of the line.)

192 The Editor Chap. 5

11=11 The !=]] key moves the cursor to the
beginning of the portion of text that
was just inserted with Knsert, found
with F(ind, or replaced with R(eplace.
When D>I is typed again, the cursor
returns to where it was.

The 1=11 key is often useful if you are
inserting text somewhere in your
workspace, and you need to look at
some other part of the workspace.
You can move to that other area and,
when ready, return to where you last
used I(nsert by simply typing C=H.

5.4 SPECIAL EDITOR KEYS

The Editor uses all of the p-SystemTs special keys as
described in Chapter 4. However, the meaning of [[esc!
and [[delete linel are subtly different. The Editor also uses
some additional special keys.

Hetxl This key accepts the changes that you
have just made with an Editor activity.
After you enter letxl, those changes
become effective within your
workspace and you are returned to the
main Editor menu.

For example, when you enter text
using Knsert, you must type letx]] to
accept the insertion.

ffescH This key discards the changes that you
have made with an Editor activity.
For example, when you use Knsert to
enter text, you can use lescj to
discard the insertion.

[[delete lineH This key allows you to erase one line
at a time when you Knsert text. It is
convenient if you donTt want to use
IbsB several times.

Sec, 5,4 Special Editor Keys 193

Eexch-ins]] This key inserts a blank character
when you are using X(change. It is
convenient since you don't have to
quit X(change and use I(nsert to place
the extra blank in your workspace.

If you want to insert a single
character while in X(change, you can
type Eexch-insU followed by that
character. The character is placed in
the blank position opened by
Eexch-insll. You can, in fact, insert
several characters in this manner.

[[exch-del]] This key deletes one character when
you are using X(change. It is
convenient since you don't have to
quit X(change and use D(elete to
remove a character.

5.5 ENTERING AND REMOVING TEXT

The EditorTs insertion and deletion activities usually apply
at the location of the cursor. Thus, by placing the cursor
appropriately, you may alter text anywhere in your
workspace.

The I(nsert activity is used to place new text in your
workspace. The Editor functions in one mode where, as
text is being inserted, the bell beeps when you approach
the end of a line (in a similar fashion to a typewriter). In
this mode, you need to type HretU at the end of every line
to go on to the next one.

Alternatively, the Editor can function in a mode where
it automatically starts a new line when the word that you
are typing does not fit onto the current line.

The first mode is most often used for line-oriented
editing such as creating tables or writing programs. The
second mode is used to create paragraphs. In conjunction
with the paragraph mode, it is possible to specify where
you want the left and right margins to be, as well as how

194 The Editor Chap. 5

much indentation you would like for the first line of a
paragraph. These two modes of inserting text are covered
under Knsert. S(et Environment is used to change from
one mode to another.

There are two activities that allow you to delete text:
D(elete and Z(ap. With D(elete you can move the cursor
around and delete text as you go. Z(ap performs an
instantaneous deletion of a certain portion of text. Z(ap
can be useful for deleting a very large portion of text
(since it may be inconvenient to move the cursor a long
distance with D(elete).

X(change is used to overwrite old text directly with
new text. You can do the same thing by Knserting the
new material and then D(eleting the old material. X(change
is often much easier for this sort of task, however.

C(opy can move a portion of text from one place to
another within your workspace. You can duplicate that
text several times if you want. You can even copy text
from a disk file into your workspace using this activity.

R(eplace is able to change one sequence of characters
into another. You indicate the sequence of characters to
change as well as the replacement sequence. Several
instances of the target sequence of characters may be
replaced at once.

5.6 TEXT APPEARANCE

There are several ways in which you can affect the way
your text appears. For example, you may wish to rearrange
paragraphs so that each line fits within certain margins.
You might want to move columns closer together or further
apart. This sort of text manipulation is possible with the
Editor activities introduced here.

A(djust allows you to change the indentation of one or
more lines. With it you can move a single line to the right
or to the left. Then, other lines (above or below) can be
moved in a similar fashion.

Sec. 5.6 Text Appearance 195

K(olumn works like A(djust except it only affects the
portion of a line which is to the right of the cursor.
K(olumn is most useful for moving columns closer together
or further apart.

S(et Environment and M(argin work together. They
enable you to automatically rearrange the words within a
paragraph so that each line is as wide as possible within
the margins that you specify. I(nsert is also able to
rearrange text in this way.

There are several ways that you can print your text
once it is in final form. These are discussed in Chapter 8
under TtEditing and Printing Tools.”

5.7 PARAGRAPH SEPARATION

I(nsert and M(argin, as just mentioned, are able to rearrange
paragraphs. In order for this to work, however, the
paragraphs must be correctly separated from each other and
from any adjacent tables or columns.

I(nsert and M(argin consider a paragraph to be any
single spaced text which is preceded and followed by
paragraph delimiters. A paragraph delimiter is one of four
items:

o A blank line

o The beginning of the workspace

o The end of the workspace

o A line that starts with the command character

This usually means that a blank line must exist between
paragraphs if they are to be treated separately.

Alternatively, the command character may be used to
indicate the beginning or ending of a paragraph by placing
it as the first character on a line. The command character
can be any character you choose. S(et Environment allows
you to change it. If, for example, the command character

196 The Editor Chap, 5

is carat, n~ft, the following two paragraphs are properly
separated:

>EdIts A(djust C(opy DCel Fdnd Knsert J(ump K(ol M(argfn P(age [3
As we said In our earlier proposal# we believe

our company Is best suited to perform these
tasks.
4k

Should you find It necessary to revise the
schedules we have Included# please Inform us at
the earliest possible date.

Although it is often easier to use blank lines between
paragraphs, it is sometimes convenient to have a character
such as this so that text formatting can be done in
conjunction with paragraph-oriented editing.

A text formatter is a program which takes a text file
and, rather than just printing it as is, formats the text
before it is sent to the printer. This can mean doing
proportional spacing, left and right margin justification, bold
and underlined printing, and so forth.

Many text formatters use commands that start with TVT
(period). For example, the Print utility (which is a simple
text formatting utility) can use a ".PAGE" command which
means to do a page break at that point in the printing. In
this case, you could set the command character to TT.TT and
create paragraphs such as:

>Edlt: A(djust C(opy D(el F(lnd Knsert J(ump Mol M(arg!n P(age []
As we said In our earlier proposal# we believe

our company Is best suited to perform these
tasks.
.PAGE

Should you find It necessary to revise the
schedules we have Included# please Inform us at
the earliest possible date.

In this way, you can use M(argin or Knsert on either of
the paragraphs above without disturbing the other
paragraph. And, at the same time, you can put text

Sec. 5.7 Paragraph Separation 197

formatting commands conveniently between paragraphs.

Also, the Print utility (and most text formatters) do not
print lines which begin with the proper command character.
This enables you to separate paragraphs (in order to edit
them in paragraph mode) but print them without a blank
line in between.

5.8 MARKERS

The Editor allows you to place as many as 20 invisible
flags, called markers, at arbitrary locations within your
workspace. Markers have names which you assign to them.
These names may have as many as eight alphabetic or
numeric characters.

The S(et M(arker activity is used to place a marker in
your workspace. The markers you set remain there even
after the workspace is written to disk.

Once a marker is set, you can J(ump there from any
place in the workspace. You may want to set markers at
locations that you frequently need to look at. They are
especially useful in a large workspace.

The C(opy F(rom file activity also uses markers. This
activity enables you to copy material from a disk file
directly into your workspace. If you only want to copy a
portion of that file, you need to indicate two markers.
The text between those markers (which must already exist
in the file) is copied.

5.9 THE COPY BUFFER

The copy buffer is a "scratch pad" area of memory where
the Editor keeps a copy of the text that you have just
inserted or deleted. Whatever is in the copy buffer may be
copied back into your workspace. The copy buffer is useful
for creating several copies of a piece of text, or for
restoring material to your workspace that you accidentally
delete.

198 The Editor Chap. 5

Text inserted with the I(nsert activity is placed in the
copy buffer (as well as in the workspace itself). This only
happens, however, if you accept the inserted text (by
typing Cetxll). If you decide to discard the insertion (by
using lesd instead of Eetxl) the text is not placed in the
copy buffer. In this case, the copy buffer is left empty
and any text it previously contained is discarded.

When you delete text using D(elete or Z(ap, it is placed
in the copy buffer. This is done whether or not you
accept the deletion (with EetxH).

Once something is in the copy buffer, it may be copied
into the workspace if you wish. This is done by placing
the cursor where you would like the copying to occur and
selecting C(opy B(uffer.

Using C(opy B(uffer does not change the contents of
the copy buffer. This means that you can use it to place
the same piece of text into your workspace several times.
However, the next time that you do an insertion or
deletion, the newly inserted or deleted material replaces
what was previously in the copy buffer. As we mentioned,
if you use I(nsert followed by EescJ, the copy buffer is left
empty. Using the M(argin activity also leaves the copy
buffer empty.

If you want to have another copy of some text which
already exists in your workspace, you can place it into the
copy buffer by deleting it with D(elete, and then typing
lesd. This leaves the original copy of the text unaltered.
You can then move the cursor, if desired, and duplicate the
text someplace in your workspace by selecting C(opy
B(uffer. In this way, you end up with two copies of the
original text.

If you D(elete text and then use letxj (instead of
lesd), the original text is removed from the workspace and
placed in the copy buffer. You can then place the text
back into the workspace somewhere else, leaving only one
copy of the original text. This can also be done using
Z(ap.

Sec. 5.9 The Copy Buffer 199

With both D(elete and Z(ap, you may receive an error
message which indicates there is no room to copy the
deletion. This means that if you proceed, the deleted text
will not be placed in the copy buffer because of memory
space limitations. That text will then be lost. (This error
message is covered in Appendix A, TtError Messages for
Major Activities.”)

5.10 TOKENS AND LITERAL STRINGS

The F(ind and R(eplace activities locate or replace
sequences of characters such as "Hi” or "Section 12”.
These character sequences are either viewed as tokens or
as literal strings. The difference has to do with the
context in which a given character sequence can be
identified by F(ind or R(eplaee.

A token must not be directly adjacent to a letter or
digit. A literal string, on the other hand, may be placed in
any context. For example, these sequences contain the
token "Hi”:

Hi
Hi there
.Hi.
Like Hi?

All of the above also contain the literal string "Hi”.
Each of these next four sequences contain the literal string
(but not the token) "Hi”:

8Hi9
Hithere
Hit parade
WATCHit

F(ind, for example, is able to locate only the first four
of these sequences when it is searching for tokens.
However, it can locate all eight of them as literal strings.

There is another difference between tokens and literal
strings. Blank spaces and carriage returns are not
significant parts of a token. However, they are significant

200 The Editor Chap. 5

within literal strings. For example, if you try to F(ind the
token:

Hi there

you could conceivably locate:

Hithere

However, if you search for it as a literal string, you wonTt
find "Hithere" because the space is missing.

In either literal strings or tokens, upper and lower case
distinctions are made. For instance, each of these is
considered to be a different sequence:

Hi
HI
hi

S(et Environment is used to determine whether F(ind
and R(eplace search for tokens or literal strings by default.
F(ind and R(eplace can override this default, however.

5.11 ENTERING THE EDITOR

To begin an edit session, select E(dit from the Command
menu. If you have a workfile (see Chapter 4) then it is
read into your workspace and displayed automatically.
Otherwise, the following prompt asks you what file you
would like to edit:

' . . . ■■ ■ ■

>EdIts
No workfile Is present. File? (<ret> for no file) FILE-SPEC Iretl

Type the file specification for the desired text file but do
not include the .TEXT suffix. For example:

>EdIt:
No workfile Is present. File? (<ret> for no file) #5:MY.F1LE IretJ

Sec. 5.11 Entering the Editor 201

reads in MY.FILE.TEXT from the disk in drive #5. If the
Editor cannot find the file that you indicated, you are
asked to type in a file name once again:

>EdI+:
No workflle Is present. File? (<re+> for no file) FILE-SPEC 1C retI
Not present. File? FILE-SPEC IretJ

m

You may keep trying until you correctly indicate an
existing text file which is on the correct disk.

If, instead of editing an existing file, you want to
create a new file, respond to the prompt by simply typing
IretH:

>Ed!t:
No workflle Is present. File? (<ret> for no file) Cretl —

If you change your mind and would rather not enter the
Editor at all, respond to the prompt by typing [[esc]].

When the Editor is entered, its main menu appears on
the top line of the screen:

>EdIt: A(djust C(opy D(el Fdnd Knsert J(ump K(ol M(argln P(age ? []

Below this menu, the first portion of the text within
your workspace (if any) is displayed.

5.12 LEAVING THE EDITOR

In order to leave the Editor, select Q(uit. When you do
this, the following options are displayed:

>Qul+:
IKpda+e the workflle and leave
E(x!+ without updating
R(eturn to the editor without updating
W(r!te to a file name and return

■i—i —a

202 The Editor Chap. 5

If you select:

U(pdate the workfile and leave

your workspace is placed on the system disk and called
SYSTEM.WRK.TEXT. The Editor is then exited and the
Command menu returns. SYSTEM.WRK.TEXT is now your
workfile. If you receive the message "ERROR writing out
the file,” several problems may have occurred. These are
covered below.

If you select:

E(xit without updating

your workspace is not saved on disk. Instead, the Editor is
simply exited. Any changes that you may have made are
not saved.

If you select:

R(eturn to the editor without updating

you do not leave the Editor at all. Nothing is saved on
disk. The material that was previously on the screen is
redisplayed just as it was before you selected Q(uit.

If you select:

W(rite to a file name and return

you are able to write your workspace to disk and give it a
name other than SYSTEM.WRK.TEXT. If you created your
current workspace from scratch, selecting W(rite causes this
prompt to be displayed:

Quit:
Name of output file (<cr> to return) —> FILE-SPEC IE ret J

This prompt is asking what you would like to name the
output text file. When you specify the file name, do not
include the .TEXT suffix. For example:

Sec. 5.12 Leaving the Editor 203

of output file «cr> to return) —> MYDISK:FILE.NAME (Eretl

saves your workspace as FILE.NAME.TEXT on MYDISK:. If
your current workspace was read in from a disk file, when
you select W(rite, you are prompted:

Quit:
»$»<ret> writes to OLD-FILE-NAME
Name of output file (<cr> to return) ’> FILE-SPEC gretl

$ gretl

There are two possible responses. You can enter a file
specification (as before). However, you may, if you wish,
enter dollar sign, "$", followed by SJretU. This writes the
workspace to disk and gives it the same name that it
originally had.

You can simply type Iretl in answer to either version
of the W(rite prompt. This returns you to the Editor
without saving anything on disk.

If the name that you give to your file is the same as
some other file currently on the disk, the old file is
removed. The Editor assumes you realize what you are
doing and does not warn you about this.

As your workspace is written to disk, the word
"Writing" is displayed, usually followed by several dots. If
there is some problem in saving the workspace, you receive
the message:

Writing.
ERROR writing out the file. Please press <spacebar> to continue.

204 The Editor Chap. 5

This indicates one of several problems:

o There is not enough room on the disk for the file that
the Editor is trying to create there. When you type
[space]], you are returned to your workspace. You can
then Q(uit W(rite it to some other disk. Later you can
try to fit it on the disk where you wanted to save it
originally.

When the Editor saves a workspace on disk, it removes
the old file with the same name if one exists (as we
already mentioned). However, the old file isnTt
removed until after the workspace is saved. This
means that there must be enough room for two copies
of the file in order for the Editor to save it.

If you have to resort to writing it to another disk, you
may be able to use the FilerTs Transfer activity to
move it back to the original disk. Transfer removes
the existing file before it places the new file on disk.

Sometimes, even this may not work because the newest
version of your file has grown larger than the older
version. In this case, even though the old version is
removed, there is still not enough room for the new
one. You may be able to explicitly R(emove
unnecessary files and/or K(runch the disk to make more
room. R(emove and K(runch are both Filer activities
and are described, along with Transfer, in Chapter 6.

o The volume where you are saving the file isnft on-line.
If you didnTt indicate a volume, this could still be the
problem (when the prefixed volume isnTt on-line). The
solution is to place the appropriate disk back in the
drive. When you type [space]), you can try again to
save the workspace on that volume. Alternatively, you
can save it on another volume.

o The file name that you specified was syntactically
incorrect. For example, you may have entered a name
that is longer than the 15 character limit. (Remember
that ".TEXT" is appended to the name you enter.) In
this case, you should type [space]) and try again with a
valid file name.

Sec, 5.12 Leaving the Editor 205

When your workspace is successfully written to disk
using W(rite, you are notified in this fashion:

>Quit:
Writing.
Your file Is 15297 bytes long.
Do you went to E(xlt from or R(eturn to the editor?

The dots after "Writing” appear as your workspace is
saved on disk. The third line tells you the length of your
file in bytes (or characters). The last line prompts you to
select E(xit to leave the Editor or R(eturn to re-enter it
and continue editing from where you left off. You might
use R(eturn if you are simply writing your workspace to
disk for safety, and you want to continue editing.

5.13 THE EDITOR MENU

In this section, the Editors menu items are covered
individually in alphabetical order. Most of these items
display error messages under certain circumstances. These
error messages are covered in Appendix A, "Error Messages
for Major Activities."

206 The Editor Chap, 5

A(djust

A(djust changes the horizontal position of one or more lines
of text.

How to use it:

Place the cursor on the line you wish to adjust. Select
A(djust and this line is displayed:

>Adjus+: L(Just R(jus+ C(en+er <lef+*rlgh+,up,down-arrows> {<etx> to leave}

Pressing [[right]] moves the line one place to the right.
Pressing [[left]] moves it to the left. Pressing ttupl or
Idownll causes the adjustment that was done to the current
line to be repeated on the line just above or below.

Selecting L(just moves the line to be flush against the
left margin. Selecting R(just moves the line to the right
margin. And selecting C(enter causes the line to be
centered between the margins. (These margins are not
necessarily the left and right screen boundaries; they are
the L(eft and R(ight margins which can be set to any
column using S(et Environment.)

A line can only be moved to the left until it is flush
against the left screen boundary. When moving to the
right, however, the line may be moved beyond the edge of
the screen. Text may seem to disappear off the screen to
the right but it is still present. An exclamation mark,
is displayed in the right-most column as an indicator
whenever text lies beyond it.

When you move vertically in A(djust, you can
accumulate horizontal movement by using Hleftll or [[right]]
on any given line. The accumulated horizontal adjustment

Sec, 5,13 The Editor Menu: A(djust 207

is then applied to succeeding lines, above or below, if you
continue moving vertically.

When you have finished with A(djust, you must use
EetxJ to accept the changes that you have made. It is not
possible to use CescII to leave A(djust.

Example:

If you want to indent your entire workspace 2 columns,
place the cursor at the beginning and select A(djust. Type
[[right! twice to adjust the first line:

Is the first IIne.
Is Is the first IIne.

<~ BEFORE ADJUST
<— AFTER ADJUST

Then type the infinite repeat factor, TT/T1> followed by
[[down!. Every line in your workspace is moved two places
to the right.

As an example of accumulated horizontal movement, you
could A(djust a line three places to the right:

djust: Kjust R(just C(enter <left»rIght,up»down-arrows> {<etx> to leave}
nthly Report:
The Good News.Page 3
The Bad News .

:

>Adjust: Kjust R(Just C(enter <left»rIght,up»down~arrows> {<etx> to leave)
Monthly Report:

1. The Good News .Page 3
2. The Bad News.Page 4

type [[down! once, adjusting the line below:

>AdJust: Kjust R(Just C(enter <left*right,up,down-arrows> {<etx> to leave}
Monthly Report:
I. The Good News.Page 3

2. The Bad News •••••.•• Page 4

and then adjust that line three more places to the right:

208 The Editor Chap. 5

>AdJus+: L(Just R(Jus+ C(enter <left*rlght,up*down-arrows> {<e+x> to leave}
Monthly Report:

U The Good News.Page 3
2. The Bad News ..Page 4

and finally type EdownJ once more:

>AdJust: L(Just R(Just C(enter <left#rlght,up*down-arrows> {<etx> to leave)
Monthly Report:

1. The Good News.Page 3
2. The Bad News .Page 4

the last line is indented 6 places which corresponds to the
accumulated horizontal movement up to that point.

Sec. 5.13 The Editor Menu: C(opy 209

C(opy

C(opy inserts text from the copy buffer, or from a text file
on disk, into your workspace.

How to use it:

Select C(opy and this menu is displayed:

>Copy: B(uffer F(rom file <esc>

Typing EescJ exits the C(opy activity.

Selecting B(uffer causes the contents of the copy
buffer to be inserted into the workspace where the cursor
is. The cursor is then left at the end of the inserted text.
(As covered earlier in this chapter, the copy buffer
contains whatever you last inserted with I(nsert, or deleted
with D(elete or Z(ap.)

Selecting F(rom file allows you to copy material from a
text file stored on disk into your workspace:

>Copy: From what file [marker.marker] ?

iiii n

FILE-SPEC EretJ
FILE-SPEC [MARKER 1 . MARKER23 I ret 31
FILE-SPEC [.MARKER] E ret 31
FILE-SPEC [MARKER.] Eret31

The .TEXT suffix should not be included in your response
to this prompt.

The first response copies all of the specified file into
your workspace.

The second response only copies that portion of the file
which lies between the two indicated markers.

210 The Editor Chap. 5

The third response copies from the beginning of the file
to the indicated marker.

And the fourth response copies from the marker to the
end of FILE.TEXT.

Example:

If you insert:

:
>Insert* Text {<bs> a char»«lel> a line) [<etx> accepts# <esc> escapes]!
Quick brown fox Jumps over the lazy dog.

with a final carriage return as shown, and accept it with
lletx]], that line is placed in the copy buffer. Now, if you
type "CB", for C(opy B(uffer, the line is duplicated:

>lnsert: Text {<bs> a char# a line} [<etx> accepts# <esc> escapes!
The quick brown fox Jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.

...

Sec. 5.13 The Editor Menu: D(elete 211

D(elete

D(elete removes text from your workspace.

How to use it:

Select D(elete and this line is displayed:

>Dele+e: < > <Mov!ng commands> {<e+x> to delete* <esc> to abort}

You can now delete text by moving the cursor with any
cursor movement key. The original cursor position is called
the anchor. When you move the cursor away from the
anchor, text is deleted. When you move the cursor toward
the anchor, the deleted text is restored.

When you are satisfied, type Hetxl to accept the
deletion or EescJ to exit D(elete and leave the workspace
unaltered.

If you accidentally delete something valuable, you can
restore it by using C(opy B(uffer.

Example:

In order to remove "John" from the line below, place the
cursor as indicated:

It: A(djus+ C(opy D(el
John Smythe*

FUnd Knsert J(ump K(ol M(arg!n P(age ?

■

Select D(elete and type [[space! five times:

212 The Editor Chap. 5

>Dele+e: < > <Movlng commands> {<e+x> to delete# <esc> to abort)
Mr. Smythe#

Now type Iletxll, and the deletion is accepted:

>Delete: < > <Moving commands> {<etx> to delete# <esc> to abort)
Mr. Smythe#

In order to remove the end of the second line below,
place the cursor immediately after "Cash" and select
D(elete:

l T ; < & \ ■' Pm.p pf/p, a;'r-p - ,, :p. Kv ,.v } pf. | k% y v

>Delete: < > <MovIng commands> {<etx> to delete# <esc> to abort)
Check No. 972 S 43.22 Food
Check No. 973 $ 100.00 Cash_ VERIFY THIS AMOUNT
Check No. 974 S 21.74 Ml sc

Type IretU:

>Delete: < > <MovIng commands> {<etx> to delete# <esc> to abort)
Check No. 972 S 43.22 Food
Check No. 973 $ 100.00 Cash
Check No. 974 S 21.74 Ml sc

Now you must type EbsJ to get the cursor back up to the
second line:

>Delete: < > <Mov!ng commands> {<etx> to delete# <esc> to abort)
Check No. 972 $ 43.22 Food
Check No. 973 $ 100.00 Cash_
Check No. 974 $ 21.74 Ml sc

At this point you can use Iletx]). (If you donTt use lbs]]
first, the "Check 974" line is pulled up immediately after
"Cash". If you ever do this accidentally, you can select
I(nsert and type EretJ to correct the situation.)

Sec. 5.13 The Editor Menu: F(ind 213

F(ind

Find attempts to locate a sequence of characters that you
specify.

How to use it:

Select F(ind and one of the following prompts is displayed:

>FlndCn]: LU+ <+arge+> => _
■HI

=>
Si

Wm
MMi

: T(ok <+arge+> => _
\

■

First enter a delimiter (which is any special character
such as t!.n, or "/")• Next, enter the sequence of
characters that you want to locate (the target). Finally
enter a matching delimiter.

F(ind can search forward or backward depending upon
the direction indicator. If no repeat factor is used, F(ind
searches for the first occurrence of the target. If a
repeat factor is used, F(ind attempts to locate that
occurrence of the target. (The [n] in the prompt indicates
the repeat factor. The tTnTT will be a number or a slash.)

F(ind can search for either tokens or literal strings (see
Section 5.10, page 199). F(ind assumes that you are looking
for a token if T(oken default (within S(et E(nvironment) is
true. Likewise, it assumes that you are searching for a
literal string if T(oken default is set to false. If the
assumed mode is token, the prompt displays nL(it”. If the
assumed mode is literal, the prompt displays TtT(oklf. You
can override the default and specifically search for a
literal string or a token by selecting L(it or T(ok before
entering the target string.

214 The Editor Chap. 5

Once you have used F(ind to locate a target, you can
find another instance of the same target without retyping
the delimiters and the sequence of characters. Instead, you
can simply type "FS", for F(ind "same".

Example:

This use of F(ind:

>FIndC 13s LU+ <+arge+> *> .Section 3.

searches for the first occurrence of the token "Section 3"
in the forward direction. In order to find "Section 3.2" you
would need to use a delimiter other than period:

>FIndCt]: L<It =>/$ectlon

If you then change the direction indicator, enter a repeat
factor of 10, select F(ind, and respond:

<FIndC10il: L(lt <target> »>LS _

F(ind attempts to locate the tenth occurrence of the "same"
literal string ("Section 3.2") in the backward direction. It
is possible that "Section 3.21" could be found because you
are searching for a literal string.

Sec, 5.13 The Editor Menu: Knsert 215

Knsert

Knsert places new text into your workspace.

How to use it:

Select Knsert and this line is displayed:

>!nser+: Text {<bs> a char» a line) [<e+x> accepts* <esc> escapes]

You can now enter whatever text you want. The Ebsll
key erases characters that you have inserted. The Iretl
key moves the cursor to the next line, as on a typewriter.
The ([delete linel key erases one entire line of inserted
text. The EetxJ key leaves Knsert after accepting the new
material into your workspace. The Qescl key leaves Knsert
after discarding everything that you have entered.

When you Knsert in the middle of existing text, the
new material is inserted between the character just to the
left of the cursor, and the character that the cursor is
directly over. (See Figure 2.3.) The line of text on which
the cursor is located is split to indicate where the new
text will go. When you leave Knsert, the gap is closed.

Only the line where you are inserting is split; any text
on lines above or below remains unchanged on the screen.
As you proceed with the insertion, however, you may
overflow the current line or you may specifically type
Cretll. In either case, the text below the current line
disappears from the screen. When you leave Knsert, the
text below is redisplayed.

Within S(et Environment there are options which allow
you to Knsert text in two different modes. One of these
modes is best for creating line-oriented text (such as

216 The Editor Chap. 5

programs, tables, or columns). The other is more suitable
for paragraphs. In the line-oriented mode, you must
explicitly type CretU at the end of every line. The bell
sounds a warning as you approach the end of a line (as on
a typewriter).

When you are using line-oriented mode, you can also
use automatic indentation if you wish. Automatic
indentation means that when you type Eretl, the next line
begins at the same level of indentation as the current line.
(You can move the cursor left or right if you donTt want
the line to start there.) If you are not using automatic
indentation, the cursor always moves to the left margin
when you type ttretl.

In the paragraph-oriented mode, a carriage return is
done automatically whenever the word you are entering
doesnTt fit onto the current line. That word is moved down
to the next line. This is convenient since you donTt have
to concern yourself about typing IretJ.

Also, in the paragraph-oriented mode, when you accept
the insertion, the rest of the paragraph (below what you
have just entered) is rearranged to fit within the left and
right margins. This rearrangement is convenient because it
automatically keeps a paragraph within the proper margins
even if you Knsert something in the middle of it.

The default I(nsert mode is line-oriented with automatic
indentation. The S(et Environment options which determine
the Knsert mode are called A(uto indent and F(illing.

NOTE: You should be careful not to Knsert in the middle
of line-structured text while using the paragraph-oriented
mode. If you do this to a table or set of columns, for
example, they will be turned into one large paragraph!

NOTE: You should be sure your paragraphs are properly
separated from each other and from any other text (see
Section 5.7, page 195).

Sec. 5.13 The Editor Menu: I(nsert

Example:

217

In order to insert "John” into ”Mr. Smythe", place the
cursor as follows:

>lnsert: Text {<bs> a char# a line} C<e+x> accepts# <esc> escapes]
Mr. Smythe

Select I(nsert and the line is split:

>lnsert: Text {<bs> a char# a line) C<etx> accepts# <esc> escapes]
Mr. _ Smythe

Type in "John” followed by a space to separate it from
"Smythe":

>lnsert: Text {<bs> a char# a line) C<etx> accepts# <esc> escapes]
Mr. John _ Smythe

And type [etxll:

Xnserti Text {<bs> a char# a line} [<etx> accepts# <esc> escapes]
Mr. John Smythe

As an example of automatic indentation, you might
start an outline by inserting this line followed by [retl:

>lnsert: Text {<bs> a char# a line} [<etx> accepts# <esc> escapes]
Chapter 1: Insects

You can now type [space! twice (for indentation) and enter
the next line:

>lnsert: Text {<bs> a char# a line} [<etx> accepts# <esc> escapes]
Chapter 1: Insects

Section 1.1 Butterflles_

When you type [ret! again, the cursor is moved to the
same indentation as the current line:

218 The Editor Chap. 5

>lnsert: Text {<bs> a char# a line) C<etx> accepts# <esc> escapes]
Chapter 1: Insects

Section 1.1 Butterflies

■111 8IS!l«iIl

This makes it easy to continue at that level of indentation:

>Insert: Text {<bs> a char# a line) [<etx> accepts# <esc> escapes]
Chapter It Insects

Section 1.1 Butterflies
Section 1.2 Beetles^

In paragraph mode, you might I(nsert this quote from
Thoreau:

>Insert: Text (<bs> a char# a line) C<etx> accepts# <esc> escapes]
"If one advances confidently In the direction of his dreams# and
endeavors to live the life which he has Imagined# he will meet with
a success unexpected In common hours.

In this example the right margin is set at column 70. Now
if you I(nsert:

" Thoreau writes, "

after "dreams," and press [[etx]], the paragraph is rearranged
to fit within 70 character lines:

>lnsert: Text {<bs> a char# a line) [<etx> accepts# <esc> escapes]
"If one advances confidently In the direction of his dreams#"
Thoreau writes# "_and endeavors to live the life which he has
Imagined# he will meet with a success unexpected In common hours."

Note that it wasnTt necessary to type [[retl while inserting
this.

Sec. 5.13 The Editor Menu: J(ump 219

J(ump

J(ump moves the cursor to the beginning of your workspace,
to the end of your workspace, or to a marker.

How to use it:

Select J(ump and this menu is displayed:

> JUMP: B(egInning E(nd M(arker <esc>

Selecting Beginning moves the cursor to the beginning
of your workspace. Selecting E(nd moves the cursor to the
end of your workspace. Typing EescH exits J(ump. If you
select M(arker, you are asked which marker to jump to:

You should enter the name of a marker; the cursor is
relocated there. If you simply type [[ret]], J(ump is exited.

Example:

When you are editing in the middle of your workspace, you
may need to look briefly at some material near the
beginning and then return to where you were working. You
can use J(ump to get to the beginning:

> JUMP: Beginning E(nd M(arker <esc> B

When you want to return you may be able to use J(ump
again if you are editing near a marker or near the end of
the file. Otherwise, you could return using 1=11, P(age, or
F(ind. (You may want to set a marker before you leave.)

220 The Editor Chap. 5

K(olumn

K(olumn, abbreviated K(ol, changes the horizontal position
of the text which lies to the right of the cursor on one or
more lines.

How to use it:

Select K(olumn and this line is displayed:

>Kolumn: <vector keys> {<etx>»<esc> CURRENT line}

Typing Bright! moves the text to the right of the
cursor one position to the right. Typing [[left! moves the
text to the right of the cursor one position to the left.
Typing Hup! or lldownll cause the lines above or below,
respectively, to be affected in the same manner as the
current line.

You can move text beyond the right margin of the
screen without losing it. However, any text moved in the
left direction which disappears "into” the cursor is removed
from the workspace. This text isnTt placed in the copy
buffer and can't be recovered.

When you move the cursor vertically within K(olumn,
you can accumulate horizontal movement by using lieftl or
Bright! on the current line. The accumulated horizontal
movement will be applied to succeeding lines above or
below.

You should use detxj to accept any changes that you
have made. You can use ffesc! to exit K(olumn, but only
the most recent changes on the current line are thrown
away; any other changes made while using K(olumn are
accepted.

Sec. 5.13 The Editor Menu: K(olumn 221

NOTE: When K(olumn deletes text, that text is
irrecoverable. You should be especially careful when Hleft]]
is used followed by vertical movement. The use of repeat
factors in this situation is even more risky.

Example:

One of the most useful ways to use K(olumn is to align or
manipulate columns. For example, if you place the cursor,
as shown, between two columns:

>Kolumn: <vec+or keys> {<etx>#<esc> CURRENT line}
Hear _ Music
Taste Food
Touch PeopIe
See Sky
Smell Flower

and use K(olumn with Irightl to move "Music” to the right:

>Kolumn: <vector keys> {<e+x>»<esc> CURRENT line}
Hear _ Music
Taste Food
Touch People
See Sky
Smel 1 F1ower

you can then use EdownJ to change succeeding lines below
in the same manner:

>Kolumn: <vector keys> {<etx>»<esc> CURRENT line}
Hear Music

Food Taste
Touch
See
Smel I

; i

People r
Sky
Flower

222 The Editor Chap. 5

M(argin

M(argin rearranges the text in a paragraph so that it
conforms as closely as possible to the margins defined
within S(et Environment.

How to use it:

Place the cursor within a paragraph and select M(argin.
Your text briefly disappears from the screen. It is then
redisplayed and the paragraph is appropriately rearranged.

To use M(argin, several options within S(et Environment
must be appropriately set. A(uto indent must be false.
F(illing must be true. And the L(eft, R(ight, and
P(aragraph margins must be set sensibly. These margins
should correspond to the columns that you wish to use as
margins for your paragraphs.

M(argin removes all extra spaces from a paragraph.
Only one space is left between words. A maximum of two
spaces is left after a period.

NOTE: Text that is not separated from a paragraph by a
blank line or a line that starts with the command character
is considered to be part of that paragraph (see Section 5.7,
page 195). You should be sure that your paragraphs are
correctly separated from each other and from other text.

NOTE: Single-spaced, line-structured text (such as columns
or tables) will be rearranged into a paragraph by Mfargin.
Since it is easy to accidentally type "M", you should be
sure F(illing is set to false within S(et Environment when
you are editing line-structured text.

223 Sec. 5.13 The Editor Menus M(argin

Example:

If you have created a paragraph that looks like this

>Edlfj A(djus+ C(opy D(el Fdnd Knsert J(ump K(ol M(argfn P(age C]
I was walking along that same tree-lined road one Autumn afternoon.

The breeze was pleasant
and everything
brought back fresh memories of long past days. It felt good to
visit this place once again.

and the margins are set as follows:

L(eft margin 5
R(ight margin 55
P(ara margin 7

you could use the M(argin command and obtain the following
rearranged paragraph:

>EdIt: A(djust C(opy D(el FUnd Knsert J(ump K(ol M(argln P(age []
I was walking along that sane tree-lined road

one Autumn afternoon. The breeze was pleasant and
everything brought back fresh memories of long
past days. It felt good to visit this place once
again.

•
•

224 The Editor Chap. 5

P(age

P(age causes the next screen full of text to replace what
is currently displayed in the window (see Figure 3.1).

How to use it:

Select P(age from the main Editor menu and the next
screen full of text appears in the window.

A repeat factor may be used to indicate how many pages
the window is to be moved. The direction indicator
determines whether the paging proceeds forward or
backward.

Example:

P(age is useful for browsing through the text in your
workspace. If you are trying to locate a particular area,
you can page through the entire workspace in a short
length of time.

If you happen to know that the area you are looking for is
a certain number of pages from the beginning of the
workspace, you can J(ump Beginning, enter the appropriate
repeat factor, and select P(age. This same technique can
be used from the end of the workspace with a reversed
direction indicator.

Sec, 5.13 The Editor Menu: R(eplace 225

R(eplace

R(eplace locates occurrences of a sequence of characters
that you select (called the target) and replaces them with
another sequence of characters (called the substitution
string).

How to use it:

Select R(eplace and one of these two prompts is displayed:

>Replace [n]: L(It V(fy <+arg> <sub> s> _

>Replace Cn3: <targ> <sub>

Enter a delimiter (which is a special character such as
".", "/", or "$"); then enter the target string followed by a
matching delimeter. After that, enter another delimiter
followed by the substitution string and a matching delimiter.

The delimiters for the target string may be the same as
the delimiters for the substitution string. However, you
should be sure that a delimiter does not appear within the
string being delimited. For example, if the target contains
a comma, you should not use a comma as the delimiter.

If you have used R(eplace at least once since entering
the Editor, you can indicate the most recently used target
and/or substitution string by simply typing TTSTT for "same."
In fact, if you have used F(ind during the current editing
session, you can type "S" to indicate the most recent target
that has been used by F(ind or R(eplace.

A repeat factor may be used to replace several
occurrences of the target. It is shown within the square

226 The Editor Chap. 5

brackets where the ,!nfT appears in the prompts above.
(Note that the repeat factor does not mean to replace the
nTth occurrence of the target; it means to replace n
occurrences of it.) The direction indicator determines
whether targets in the forward or backward direction will
be replaced.

Target and substitution strings are treated as either
tokens or as literal strings (see Section 5.10, page 199).
R(eplace works with tokens when T(oken default within S(et
Environment is true. It works with literal strings when
T(oken default is false. You may override the default by
selecting L(it or T(ok from the R(eplace prompt. (The
prompt displays the opposite of the default.) L(it or T(ok
must be selected before entering the target or between
entering the target and substitution.

The V(erify option, abbreviated V(fy, allows you to
select the occurrences of the target which are to be
replaced. If you use a repeat factor without V(erify, all
occurrences of the target that are found are replaced
automatically. If you would rather watch the progress and
determine whether or not a given occurrence of the target
should be replaced, select V(erify before entering the target
or substitution string. When you do this, each time the
R(eplace activity encounters an occurrence of the target, it
prompts you:

>Replace: <esc> aborts# *R* replaces# ’ * doesn’t

When this occurs, the cursor indicates which instance of the
target has just been found. Type "R" to replace it,
EspaceJ to leave it unchanged, or ffescl to leave it
unchanged and cancel the R(eplace operation.

When the V(fy option is used, this prompt is redisplayed
until you have replaced as many occurrences of the target
as you indicated with the repeat factor, or until the last
occurrence of the target is found, or until you use lescl.

Sec* 5.13 The Editor Menu: R(eplace 227

Example:

You might want to replace all occurrences of the word
"January” with "February". From the beginning of your
workspace, type slash, "/", to indicate the infinite repeat
factor. Then select R(eplace and respond:

>Repiace C/3: LCIt V(fy <targ> <sub> => /January/ /February/

The replacements are done and the cursor is left at the
end of the last "February" placed in the workspace.

If you want to replace the string "2000.00 / 2" with
"1,000" you could do it like this:

>Repiace [13: LUt V(fy <+arg> <sub> => ,2000,00 / 2, /I*000/

Since a period and a slash occur in the target, neither of
them can serve as the delimiter; comma is a good choice.
In the substitution string, however, a comma occurs; slash is
chosen as the delimiter.

If you want to change most occurrences of "Section 3"
with "Section 2", you could type "and use R(eplace with
L(iteral and V(erify in this manner:

>Replace C/3: L(It V(fy <+arg> <sub> *> IV /Section 3/ /Section 2/

For each literal string "Section 3", you are asked to verify
if you want to make the replacement. You might decide to
replace it in the case of "Section 3" or "Section 3a".
However, you might decide not to replace it if "Section 30"
is found.

228 The Editor Chap. 5

S(et Environment

S(et E(nvironment displays useful information about the
status of your workspace. It also enables you to set
several options which determine how the Editor behaves.

How to use it:

Select S(et and this prompt is displayed:

>Se+: E(nv!ronment M(arker <esc>

Select E(nvironment and a display similar to this appears:

>EnvIronment: {Options} <spacebar> to leave _
A(uto Indent True
FUlllng False
L(eft margin 1
Rdght margin 80
P(ara margin 6
C(ommand ch
S(et tabstops
T(oken def True

1987 bytes used# 16445 available.

■ ■ -

leave _

Patterns:
<target>= 'Your target* <subst>= 'Your substitution string'

Markers:
MARKER1 MARKER2 SO FORTH

WfflM mm

ess
Editing: YOUR.FILE
Created January 1# 1983; Last updated January 1# 1983 (Revision 1)
Editor Version C 3

Several options are shown: A(uto indent, F(illing, and
so forth. Most of these options have a value associated
with them. (The values shown above are typical of what
you might see.) In most cases, these values are a number
or a true/false indication. Below the options and their
values is additional information that reflects the state of

Sec. 5.13 The Editor Menu: S(et Environment 229

your workspace. (Not all of this information is present
every time you enter S(et Environment.)

To alter the value associated with an option, select the
option by typing the corresponding letter. The cursor is
moved to the line where the old value is displayed. To
enter a numeric value, type the number followed by Iretl.
To enter a true/false indication, type ”T” or TTF!t. To enter
a character value, type the character.

A(uto indent

A(uto indent stands for Automatic indentation.” Its default
value is true.

When A(uto indent is true, typing ffretj in Knsert
causes the next line to start at the indentation of the
current line. When A(uto indent is false, typing [[ret]] in
Knsert starts the next line at the left margin.

F(illing

F(illing stands for TTline filling.” Its default value is false.

When F(illing is false, you are editing in the line-
oriented mode (as described under Knsert). M(argin cannot
do anything in this mode.

When F(illing is true and A(uto indent is false, you are
editing in the paragraph-oriented mode (again, described
under Knsert). M(argin does function in this mode.

L(eft, R(ight, and P(ara Margins

The L(eft margin, R(ight margin, and P(ara margin options
allow you to define the EditorTs margins. These margins
affect Knsert and M(argin when you are editing in
paragraph mode.

230 The Editor Chap. 5

The left marginTs initial value is 1 (which is the first
column on the screen). The right marginTs initial value is
80 (which is the last column on most screens). The
paragraph margin indicates the indentation that you want
the first line of a paragraph to have; it has an initial value
of 6.

C(ommand ch

C(ommand ch stands for command character. Its initial
value is carat,

The command character (see Section 5.7, page 195) may
be used to indicate the beginning or ending of a paragraph
by placing it as the first character on a line. It is
recognized by M(argin and Knsert when you are editing in
paragraph-oriented mode.

S(et tabstops

S(et tabstops allows you to change the positions of the tab
stops. By default, tab stops are placed at every eighth
position across the screen.

Select S(et tabstops and the following display appears:

Set tabs: <rlght# left vectors> C(ol# Koggle tab <etx>

Column # 1

The dashed line represents the 80 columns on the
screen. Each "T” indicates a tab stop.

In order to add or delete a tab stop, you must first
place the cursor at the desired location along the dashed
line. To move the cursor, use the IleftH or [[right]] keys.
Alternatively, you can select C(ol # and enter a column

Sec, 5,13 The Editor Menu: S(et Environment 231

number followed by Eretl. The cursor is moved there.

Once you have positioned the cursor, you may select
T(oggle tab. This creates a tab stop there if one does not
currently exist. It removes a tab stop if one does
currently exist.

When you have the tab stops setup to your satisfaction,
type Hetxl! to return to the S(et Environment display.
When you continue editing, the new tab stops are in effect.

T(oken def

T(oken def stands for token default. Its default value is
true.

F(ind and R(eplace are able to specifically work with either
tokens or literal strings. If you do not specify which one,
however, they work with tokens if T(oken default is true
and literal strings if T(oken default is false.

The Rest of S(et E(nvironment

Below all of the options on the S(et Environment display,
there is some more information. It looks similar to this:

.
1987 bytes used# 16445 available.

Patterns:
<target>“ *Your target1 <sub$t>«* 'Your substitution string*

Markers:
MARKER1 MARKER2 S0_F0RTW

Editing: YOUR.FILE
Created January 1# 1983? Last updated January 1» 1983 (Revision 1).
Editor Version C].

Not all of this information is present all the time. The

232 The Editor Chap. 5

"Patterns" and "Markers" are displayed only when applicable.

The first line indicates how many bytes (or characters)
are used and how many are still available within your
workspace. The sum of these two numbers is the maximum
size your workspace can be. This maximum size varies
among computers and depends upon the amount of main
memory that your particular computer has.

The next line shows the target string and substitution
string patterns (if they exist). If you used either F(ind or
R(eplace in the current editing session, you introduced a
target string. If you used R(eplace, you introduced a
substitution string.

Next, the names of any markers that you have set are
displayed. The markers are displayed by S(et Environment
so that you can easily check to see what markers exist.

The next line shows the date the workspace was first
created, the date it was last updated to disk, and the
number of times it has been revised on the disk.

The final line shows the version number of the UCSD
p-System Editor that you are using.

Sec. 5.13 The Editor Menu: S(et M(arker 233

S(et M(arker

S(et M(arker places markers in your workspace.

How to use it:

Position the cursor where you want the marker to be
located and select S(et M(arker. You are prompted for a
marker name:

Set what marker ? MARKER

The name should consist of eight or fewer characters.
You may set as many as 20 markers. (If you attempt to
set more, you are asked if you want to remove one of the
existing markers in order to set another one.)

Example:

There may be a section of text within your workspace,
called "Section 3", that you need to J(ump to frequently.
You could place the cursor there and use S(et M(arker:

i Set what marker ? SECT3 gretj

Later, you can find this location by using J(ump M(arker
like this:

Jump to what marker ? SECT3 Iretl
8# ' ' - - »» ^ «

■mW'-B

WzmMmfmmiwM

234 The Editor Chap, 5

V(erify

V(erify assures that the screen reflects the actual contents
of your workspace.

How to use it:

There are some rare circumstances under which text can be
inappropriately left on the screen. It is usually obvious
when this happens.

Selecting V(erify causes the text on the screen to briefly
disappear and then be redisplayed. If there was anything
extraneous on the screen, it is no longer present.

V(erify also tends to move the window so that the cursor is
near the middle of the screen.

Sec. 5.13 The Editor Menu: X(change 235

X(change

X(change enters new text by overwriting existing text
within your workspace.

How to use it:

Select X(change and the following line is displayed:

^exchange: Text <vector keys> {<etx>*<esc> CURRENT Hne}

Type in the text you want. The original text at the
location of the cursor is replaced by what you enter.

It is possible to move the cursor without affecting the
existing text. In order to do this, you can use any cursor
movement key except [[space!. If you use [[space]!, a blank
character replaces what was originally there.

To accept the changes that you have made, use Cetxll.
You can use [[escll to exit X(change, but if you have moved
to more than one line, only the most recent changes to the
current line are discarded.

While in X(change, you can insert an extra blank
character by typing Cexch-insl. And, you can delete a
character by typing [[exch-del]]. These keys are convenient
since you do not have to exit X(change and use Knsert or
D(elete; you can remain in X(change and simply type a key.

236 The Editor Chap, 5

Example:

If you want to change:

>EdIts A(djust C(opy D(el FUnd Knsert J(ump K(ol MCargln P(age [3
One for the money

to "Two for the show", select X(change and enter the new
line:

>eXchange: Text <vector keys> {<
Two for the show^.

e>»<esc> CURRENT line}
:

Now, you need to delete the last "y". One way to do
this is to accept the changes you have made with X(change,
and to use D(elete. However, it is easier to simply type
Eexch-dell] once:

>eXchange: Text <vector keys> {<etx>,<esc> CURRENT line)
Two for the show

I

Now use detxj and the changes are accepted.

Sec. 5.13 The Editor Menu: Z(ap 237

Z(ap

Z(ap deletes all text between the current cursor position
and the first character associated with the most recent
F(ind, R(eplace, or I(nsert.

How to use it:

Before using Z(ap, you should be sure you know the
location of the first character associated with the most
recent F(ind, R(eplace, or I(nsert. Place the cursor at
some other location and select Z(ap to remove the material
that lies between those two positions.

If you are removing more than 80 characters, this prompt
appears:

WARNING* You are about to zap more than 80 chars, do you wish to zap? (y/n>

Type !!Y,T if you wish to proceed and TTN" otherwise.

Example:

If you insert and accept a sentence which you then want to
delete, you can remove it by simply typing T,Zn (since the
cursor is already at the end of the sentence).

If you F(ind or R(eplace a sequence of characters, the
cursor ends up at the end of the sequence. You can, if
you want, remove the sequence by selecting Z(ap.

If you want to remove a large section of text from your
workspace, you could place the cursor where that text
begins:

238 The Editor Chap. 5

>Edlt: A(djust C(opy D(el FUnd Knsert J(ump K(ol Mtargln P<age [3
This Is the beginning of a large portion of
text to be discarded ...

Select Knsert and then immediately exit it with lescD or
letxD. Next, move the cursor to the end of the text to be
deleted:

>EdIt: A(djust C(opy D(el FUnd Knsert J(ump K(ol M(argln P(age C 3
... Here Is the end of the large portion of
text to be discarded.

Now, select Z(ap and you receive the warning:

.

WARNINGI You are about to zap more than 80 chars, do you wish to zap? (y/n) Y

If you type "Y" as shown, the text is deleted. This is
often easier than using D(elete to remove the text.

When you perform Z(ap on a large portion of text, you
may also receive a message indicating that there is "no
room to copy the deletion." This is described in Appendix
A, "Error Messages for Major Activities."

THE FILER

6.1 INTRODUCTION

The Filer is responsible for managing files on your disks.
It allows you to see what files are there, move them
around, change their names, and so forth. It also allows
you to change the name of a storage volume, initialize its
directory, and check its magnetic recording surface for
physical problems.

In addition, the Filer allows you to interact with
communication volumes. For example, files may be printed
or displayed on the console.

Chapter 4, "The Operating System," covers files and
volumes in some detail. The Filer is principally concerned
with them and so most of that material is especially
relevant to this chapter.

The next few sections summarize what the Filer can
do. Next, the activities on the Filer menu are described in

239

240 The Filer Chap. 6

alphabetical order. At the end of this chapter, there are
sections covering some more advanced topics: subsidiary
volumes, wild cards, and utility programs for recovering lost
files or directories.

6.2 VIEWING FILES AND VOLUMES

As we just mentioned, files and volumes are covered in
Chapter 4. Briefly, storage volumes (which are usually
disks) contain information in the form of files. Several
files may reside on a disk. At the beginning of a storage
volume, the p-System maintains a file directory. The name
of every file on the volume is kept there. Other
information, such as the location of each file, its size, and
the date it was created, is also stored in the directory.

When you want to view the files on a disk, you can
either use the L(ist directory or E(xtended list directory
activities.

L(ist directory informs you what files are on a disk and
gives you their sizes and dates of creation.

E(xtended list directory works just like L(ist directory
except that more information is displayed. This extra
information includes the location of each file and its type
(such as code or text file). Also, the unused areas on the
disk are shown.

If you want to see what volumes are accessible to the
p-System, you should use V(olumes. V(olumes displays the
names of all storage volumes and communication volumes
which are on-line.

6.3 CREATING AND REMOVING FILES

The editors and compilers can create files. An editor
creates text files and a compiler creates code files. The
Filer can be used to create files, as well. It also has the
ability to remove files (no matter how they were created).

Sec. 6.3 Creating and Removing Files 241

M(ake creates a disk file. The content of the new file
is whatever happened to be on the disk in the area where
the file was created.

R(emove deletes a file (or several files) from a disk.

Z(ero can also be used to remove files. If there are
files on a disk to begin with, Z(ero removes all of them.

6.4 MOVING FILES AROUND

Often, you may need to move a file from one disk to
another. Perhaps you will want to move all of the files on
a master disk to a back up disk. Or you may want to
move a file from one place on a disk to another location
on that same disk.

Transfer can do all of these things. If you use
Transfer to move a file to the same volume that it was
originally on, and you give it the same name, the old copy
of the file is removed. However, if you give the file a
new name, or if you transfer it to a different disk, the
original copy of the file remains.

You may find it convenient to use wild cards in
conjunction with Transfer. Wild cards allow you to
transfer several files at a time very easily. (They are
discribed in the "Wild Cards" section later in this chapter.)

K(runch is a special tool for "crunching" a disk. It
moves all the files together so that the free space on a
disk is consolidated into one large area. K(runch is
especially useful when a disk has become "fragmented," that
is, when its files are spread out. In this situation, disk
space may only be available in relatively small portions.
For example, a fragmented disk might have enough free
space to store a large file. However, if no single unused
area is big enough to hold that file, it canTt be stored on
the disk. After you use K(runch in this situation, the large
file can fit onto the disk.

242 The Filer Chap. 6

6.5 PRINTING AND DISPLAYING FILES

You can also use the FilerTs Transfer activity to print or
display files. When a file is transferred to PRINTER:, it is
printed. Similarly, when a file is transferred to CONSOLE:,
it is displayed on the screen. In either case, if it is a
text file, it appears exactly as it does in the Editor.

You can Transfer other kinds of files to the printer or
the console. However, some files are not intended for this.
Code files, for example, contain material that is not meant
to be viewed directly. If you try to print or display a
code file, you receive "garbage” as your output. On the
other hand, some kinds of data files consist of readable
material that can be printed or displayed using Transfer
without any difficulties.

6.6 THE DISK SURFACE

The recording surface of a magnetic disk can be damaged
in several ways. Physical damage may occur from long or
rough use. A surge of voltage when the disk is in the
drive can hurt the recording surface. A poorly functioning
disk drive can also damage a disk.

Sometimes the damage caused by these problems is
permanent, but often it is not. The Filer has facilities for
finding any problems that might exist on a diskTs surface
and correcting them if possible.

The B(ad blocks activity discovers these kinds of
problems. (A block on a disk is an area that is 512 bytes
long.) B(ad blocks informs you which blocks, if any, on a
particular disk are having problems.

X(amine allows you to test the blocks that you suspect
are bad to see if they are permanently bad, or if they can
be fixed. If the troublesome areas on your disk*s surface
can be returned to normal, X(amine does this for you.
Otherwise, you can mark the bad blocks so that valuable
material is not written, and perhaps lost, there. You might
choose to discard disks with bad blocks, however.

Sec. 6.6 The Disk Surface 243

There are three utility programs that may assist you in
recovering from disk problems. They are Recover,
Copydupdir, and Markdupdir. These utilities are covered at
the end of this chapter.

6.7 ENTERING AND EXITING THE FILER

To use the Filer, SYSTEM.FILER must reside on a volume
which is on-line.

In order to enter the Filer, select F(ile from the
Command menu. The Filer menu is displayed and looks like
this:

er: G(e+> S(ave» W(ha+, N(ew> Kdlr, R(em. C(hng» TCrans, D(ate»? C 3

If you type "?TI twice, the remaining portions of this
menu are displayed:

Filer: Q(ul+, B(ad-blks» E(x+-dfr# K(rnch# M(ake» P(reflx» V(ols»? i 3

Filer: X(amlne» ZCero, O(n/off-lIne, F(I Ip-swap/lock C 3

To exit the Filer, select Q(uit and you are returned to
the main p-System menu.

6.8 DISK SWAPPING

When you enter the Filer, code is read into main memory
from the disk file SYSTEM.FILER. Some of the code may
remain on disk, however. Each time you select an activity,
it is possible that a disk access will be required to read a
portion of SYSTEM.FILER into main memory. If you have
removed the disk which contains SYSTEM.FILER from its
drive, you are prompted to replace it and type [[space! to
continue. This can be an inconvenience if you only have
two disk drives (since the Filer performs many disk-to-disk
operations and removing the disk containing SYSTEM.FILER
is often required).

244 The Filer Chap. 6

The F(lip-3 wap/Lock activity addresses this problem. If
your computer has enough main memory, the entire Filer
can be "locked" into memory. This means that no further
disk accesses will be required to read the Filer!s code. (If
your computer doesnTt have enough memory, you will not be
able to take advantage of F(lip-Swap/Lock.)

6.9 THE FILER MENU

In this section, the activities on the FilerTs menu are
covered alphabetically. Most of these activities display
error messages under certain circumstances. The errors are
covered in Appendix A, "Error Messages for Major
Activities." The file and volume notational conventions (see
Section 4.16, page 161) are especially applicable to these
descriptions.

Sec. 6.9 The Filer Menu: B(ad Blocks 245

B(ad Blocks

B(ad blocks, abbreviated B(ad-blks, scans a diskTs surface
for physical problems which can cause I/O errors.

How to use it:

Select B(ad blocks and one or more of the following
prompts appear:

Bad block scan of what vol ? VOLUME-ID I ret 1
Scan for ### blocks ? (Y/N) Y or N
Scan for how many blocks ? £## (Eretl

The first prompt asks for the volume that you want to
check.

The second prompt only appears if there is a valid
directory on the volume. This prompt displays the total
number of blocks on that volume and asks if you want to
check all of them.

If you indicate that you donTt want to check the entire
volume, or if no valid directory exists, the third prompt
asks how many blocks you want to check.

After this, the checking proceeds. The bad block scan
can take several seconds to a minute (or more) depending
upon the speed and storage capacity of your disk hardware.
If no problems are found, you are simply informed:

246 The Filer Chap. 6

If errors are found, they are reported like this

Block 99 Is bad
Block 99 Is bad
Block 99 Is bad
3 bad blocks
FHe(s) endangered:
FILE-NAME-1 99 99
FILE-NAME-2 99 99

I

The block numbers for any bad blocks are given. (You
can use the X(amine activity to attempt to fix them.) The
endangered files (in which those blocks occur) are listed.
The numbers which follow an endangered file indicate the
first and last block of that file.

Example:

If you are encountering I/O errors with a disk, it is
reasonable to suspect that there are bad blocks on it. To
check the disk surface, you would use B(ad blocks in a
fashion similar to this:

The next step is to use the X(amine activity to attempt
to fix block 32.

Sec, 6.9 The Filer Menu: C(hange 247

C(hange

C(hange, abbreviated C(hng, alters the name of a file or
storage volume.

How to use it:

Select C(hange and one or more of the following prompts
appear:

Change what file ? FILE-SPEC Cretl
Change to what ? NEW-FiLE-NAME IretJ
Remove old VOLUME-NAME:NEW-FILE-NAME ? Y__or N
VOLUME-NAME s FILE-NAME —> NEW-FILE-NAME

The first prompt asks you to indicate the file that is
to have its name changed.

The second prompt asks for the new name to be given
to that file.

If there is already a file on the disk with the new
name, the third prompt asks if you want to remove it.
(You canTt have two files with the same name on the same
disk.)

If you type "Y", or if there wasnTt already a file with
that name, the change takes place and the final line is
displayed.

In order to change a volume name, the process is
similar:

Change w PLUME-1D (Eretl
Change t -VOLUME-NAME: Eretll
VOLUME-N EW-VOLUME-NAME:

248 The Filer Chap. 6

The first two prompts ask for the volume name to change
and for the new volume name. The third line indicates
that the change was made successfully. If an existing
volume with the new name is on-line, the change operation
will not go through.

It is possible to specify the old name and the new
name in response to C(hange!s first prompt by using a
comma, like this:

Change what file ? FILE-SPEC ± NEW-FILE-NAME Iretl

This is convenient since it is usually easier to type.

Wild cards may be used with C(hange. They allow you
to change the names of several files at once. See the
"Wild Cards" section at the end of this chapter for more
information about this.

Example:

To change the name of a file on MYDISK: from FILE.TEXT
to OLD.FILE.TEXT, use C(hange like this:

Change what file ? MVDISK:FILE.TEXT
Change to what ? OLD.FILE.TEXT Iret
MYDISKjFILE.TEXT —> OLD.FILE.TEXT ' Z' \ ■

To change the name of a disk from SYSTEM2: to
MYDISK: you can use C(hange like this:

Change what file ? SYSTEM2: lEretU
Change to what ? MYDISK: tret!
SYSTEM2: —> MYDISK:

Sec. 6.9 The Filer Menu: D(ate 249

D(ate

D(ate displays the p-Systeir^s current date and allows you
to alter that date if you wish.

How to use it:

Select D(ate and the p-Systemfs current date is displayed
along with a prompt asking for the new date:

Date set: <1..31>-<Jan..Dec>-00..99
Today Is 1-Jan-83
New date ?

You can respond to the prompt by entering a new date.
In order to do this, type the number of the day, hyphen,
the first three letters of the month, hyphen, and the last
two numbers of the year. For example:

New date ? 2-JAN-83 Eretl

You donTt always have to type all of this. If you only
want to change the day, you can simply type that number
followed by Eretl. In this case, the month and the year
remain the same. You can also change just the day and
the month if you wish. Given that the date is currently
set to l-Jan-83, all of the following responses change it to
2-Jan-83:

New date ? 2 Eretl
New date ? 2-JAN Eretl
New date ? 2-JAN-83 Eretl

. V ' ' . ■ : ::: ■ .' ■ ■

If you simply type EretJ in response to the D(ate
prompt, the date remains the same.

250 The Filer Chap. 6

E(xtended List

E(xtended list directory, abbreviated E(xt-dir, displays a
disk directory in the same way that L(ist directory does,
except that more information about the files is provided.

How to use it:

Select E(xt-dir and this prompt is displayed:

Dir listing of what vol?

■
-

UME-ID ± FILE-SPEC (Eret

The first response lists the directory of the specified
volume on the console.

The second response only lists the directory entry for
the particular file indicated. If that file is specified using
wild cards, a subset of the directory (such as all the text
files) can be listed. (See "Wild Cards" later in this
chapter.)

The third response creates a listing of the volume and
sends that listing to the file specified. If that file is a
disk file, the listing is saved on disk. (Normally, you would
specify a text file to do this.) If the file specification
indicates a communication volume, the listing is sent there.
For example, if the file specification is PRINTER:, the
directory listing is printed.

Sec. 6.9 The Filer Menu: E(xtended List 251

Example:

Select E(xt-dir and respond as follows:

Dir listing of what vol? #4: IretH

The directory listing of the disk in drive #4: then
appears on the console and looks similar to this:

MY VOL:
SYSTEM.PASCAL 113 1-Jan-83 6 512 Codef1le
SYSTEM.Ml SCINFO 2 1-Jan-83 119 512 DatafIle
SYSTEM.FILER 32 1-Jan-83 121 512 Codef1le
SYSTEM.EDITOR 49 1-Jan-83 153 512 Codeflie
SYSTEM.LIBRARY 21 1-Jan-83 202 512 Codef!le
SYSTEM.INTERP 30 1-Jan-83 223 512 Datafile
< UNUSED > 9 253
TEST.TEXT 4 1-Jan-83 262 512 Tex+flle
TEST.CODE 9 1-Jan-83 266 512 Codef1le
< UNUSED > 4 275
SCRIPT.TEXT 4 1-Jan-83 279 512 Tex+flle
< UNUSED > 37 283
9/9 f11es<listed/1n-dIr>» 270 blocks used* 50 unused* 37 In largest

Each file name is followed by the length of the file in
blocks. The next column contains the date the file was
created or last modified. The fourth column shows the
starting block of each file. The fifth column indicates the
number of bytes in the last block of the file. The last
column shows the file type. The unused areas can be
clearly seen.

The last line indicates: 9 files have been listed out of
9 total; there are 270 blocks in use on the volume; there
are 50 blocks still available; and the largest single unused
area is 37 blocks long.

252 The Filer Chap. 6

F(lip Swap/Lock

F(lip Swap/Lock determines whether or not portions of the
FilerTs code are allowed to be swapped between main
memory and disk (see Section 6.8, page 243).

How to use it:

Select F(lip Swap/Lock and this message is displayed
indicating that the FilerTs segments are locked into main
memory:

Filer segments mem locked. [#### words]

If you type ”F” again, the situation is reversed:

Flier segments swappable. [#### words] S $ k ¥: \ ' 1 fe* ■■ ll ' 4m

35 ^

The number of 16-bit words available in main memory is
displayed in both cases. Often there is less memory space
available when the Filer is locked into memory. If the
amount of remaining main memory is too small, some of the
Filer’s activities will work more slowly. (On some
computers, there isn’t even enough main memory to lock the
entire Filer into memory.)

Example:

You may have a computer with only two disk drives. If
you need to use the Filer to do several disk-to-disk
operations, it is likely that you will need to remove the
disk containing SYSTEM.FILER (which is probably the
system disk). Before doing this, you should lock the Filer
into memory by selecting F(lip swap/lock.

Sec. 6.9 The Filer Menu: G(et 253

G(et

G(et designates a text file and/or code file as the workfile.

How to use it:

Select G(et and one or more of the following lines appear:

Get what file ? FILE-SPEC gretj
Throw away current workfile ? Y or N
Text file loaded
Code file loaded
Text & Code file loaded
No file loaded

Respond to the first prompt by indicating the file to be
designated as your workfile. The suffixes .TEXT and
.CODE are automatically appended to the name you enter.

The second prompt only appears if SYSTEM.WRK.TEXT
or SYSTEM.WRK.CODE (the temporary workfiles) are on
your system disk. If you respond with ,TY?t, the
SYSTEM.WRK files are removed from the disk. If you type
T!N", G(et is cancelled. If you want to use G(et but do not
want to lose the existing temporary workfiles, you should
use S(ave first.

One of the last four messages is displayed when G(et is
finished. The first message indicates that a text file was
found which has the name you entered. That text file is
now your work file. If the second message appears, a code
file was found. The third message indicates that a text
file and a code file match the name you gave. And the
final message indicates that no file was found with that
name. In the last case, you do not have a workfile after
using G(et.

254 The Filer Chap. 6

Example:

If you have the file PROGRAM.TEXT on your disk, you can
select G(et and respond:

If you now Q(uit the Filer and select E(dit,
PROGRAM.TEXT is automatically loaded into the
workspace. If you select C(omp, PROGRAM.TEXT is
automatically compiled.

Sec. 6.9 The Filer Menu: K(runch 255

K(runch

K(runch consolidates all of the unused space on a disk into
one contiguous area. It does this by moving the files as
far forward (or backward) as possible.

How to use it:

Select K(runch and one or more of the following lines are
displayed:

h what voI ? VOLUME-ID Iretl
end of disk, block ### ? (Y/N) Y or N
Ing at block # ? tii Eretl

forward FILE-NAME-1
g forward FILE-NAME-2

backward FILE-NAME-3
-NAME: crunched

The first prompt asks for the volume that you want to
K(runch.

The second prompt asks if you want K(runch to start
from the end of the disk and move all of the files forward.
If you type "Y", the crunching proceeds. If you type "N",
the third prompt appears and asks where you would like the
crunching to begin.

In response to the third prompt, enter the number of
the block where you want K(runch to start. Files in front
of that block are moved toward the beginning of the disk;
files behind it are moved toward the end.

As the crunching proceeds, a "Moving forward" or
"Moving backward" message is displayed for each file which
is moved.

256 The Filer Chap, 6

The final message indicates that K(runch has
successfully completed its operation.

If SYSTEM.FILER or SYSTEM.PASCAL are moved during
the K(runch operation, you are prompted to reboot (because
the p-System cannot gracefully recover under these
circumstances).

NOTE: Kfrunch is dangerous to use on a disk that has had
blocks that are not marked as .BAD files. K(runch can
move good files on top of these areas, destroying valuable
data. It is a good habit to do a B(ad block scan before
you Kfrunch a disk.

Example:

Consider the volume described by this extended listing:

If you want to place a forty block file on the following
disk, it won!t fit. The reason is that this disk doesnTt
contain 40 blocks in one unused area. However, there are
more than 40 available blocks throughout the disk. In order
to consolidate that unused disk space, you can select
K(runch and respond:

Crunch what vol ? MY VOL; IretJ
From end of disk, block 320 ? (Y/N) Y
Moving forward TEST.TEXT
Moving forward TEST.CODE
Moving forward SCRIPT.TEXT
MYVOL: crunched

Sec. 6.9 The Filer Menu: K(runch 257

If you do another
unused disk space
MY VOL:

extended listing, you can see that the
has been consolidated at the end of

MY VOL:
SYSTEM.PASCAL 113 1-Jan-83 6 512 Codef11e
SYSTEM.MlSCINFO 2 1-Jan-83 119 512 Dataf11e
SYSTEM.FILER 32 1-Jan-83 121 512 CodefI1e
SYSTEM.EDITOR 49 1-Jan-83 153 512 Codef 11e
SYSTEM.LIBRARY 21 1-Jan-83 202 512 CodefI1e
SYSTEM.INTERP 30 1-Jan-83 223 512 Dataf11e
TEST.TEXT 4 1-Jan-83 253 512 Textf11e
TEST.CODE 9 1-Jan-83 257 512 Codef11e
SCRIPT.TEXT 4 1-Jan-83 266 512 TextfIle
< UNUSED > 50 270
9/9 f1les<ltsted/ln-dlr>» 270 blocks used* 50 unused* 37 In largest

Now there is enough room to place the forty block file on
MY VOL:.

258 The Filer Chap. 6

L(ist Directory

L(ist directory, abbreviated L(dir, displays the names (and
other pertinent information) of all the files on a disk.

How to use it:

Select L(ist directory and this prompt is displayed:

i
Hi Dir listing of what vol? VOLUME-ID Iretl

FILE-SPEC (EretJ
VOLUME-ID » FILE-SPEC Oet31

The first response lists the directory of the specified
volume on the console.

The second response lists the directory entry only for
the indicated file. If that file is specified using wild
cards, a subset of the directory (such as all of the code
files) can be listed. (See the "Wild Cards" section later in
this chapter.)

The third response creates a listing of the indicated
volume and sends that listing to the file specified. If the
file specification indicates a disk file, the listing is placed
in that file. However, the file specification might be a
communication volume such as PRINTER:. In this case, the
directory listing is printed.

Example:
a

In order to view the directory of the disk in #4, use L(ist
directory like this:

Dir I Is+lng of what vol? #4$. (EretJ

Sec. 6.9 The Filer Menu: L(ist Directory 259

The directory listing then appears on the console and looks
similar to the following example:

MY VOLs
SYSTEM.PASCAL 113 1-Jan-83
SYSTEM.MlSCINFO 2 1-Jan-83
SYSTEM.FILER 32 1-Jan-83
SYSTEM.EDITOR 49 1-Jan-83
SYSTEM.LIBRARY 21 1-Jan-83
SYSTEM.INTERP 30 1-Jan-83
TEST.TEXT 4 1-Jan-83
TEST.CODE 9 1-Jan-83
SCRIPT.TEXT 4 1-Jan-83
9/9 f1les<llsted/ln-dlr>» 270 blocks used. 50 unused. 37 In largest

Each file name is followed by the length, in blocks, of
the file, and the date it was created or last modified. The
final line indicates that there are 9 files listed out of 9
files total; there are 270 blocks of disk space used and 50
available; and out of those 50, the largest contiguous area
is 37 blocks long.

If you want to print this listing for future reference,
you could do it like this:

Dir listing of what vol? §4± PRINTER} (Eretl

Alternatively you could send the listing to a disk file:

Dir 11 sting of what vol? £4s. ± LIST, TEXT CretJ

Later, you could use Transfer to send LIST.TEXT to
PRINTER:. This prints the directory listing in the same
way that the first response did. It may be useful to have
a copy of the directory saved in a disk file, however.

260 The Filer Chap. 6

M(ake

M(ake creates a disk file. The initial information in such a
file is whatever happens to be on the disk in the area
where the file is created.

How to use it:

Select M(ake and this prompt is displayed:

You should enter the name of the file you want to
make. As these four responses indicate, you may include a
size specification and/or a volume ID.

If your file name ends with .TEXT, a text file is
created. Similarly, if it ends with .CODE, .FOTO, .BACK,
.BAD, or .SVOL, the corresponding type of file is created.
(The .BACK and .FOTO files arenTt covered in this book.)
If none of these suffixes are used, a data file is created.

You can choose the size of a file you make by using a
size specification (see Section 4.5, page 144). For instance,
the following response makes a 10 block file:

Make what file ? FILE-NAME CIO] [EretiB

When a file length is given like this, the file is created
in the first unused area on the disk that is large enough to
hold it. In this example, the file occupies the first
available area that is at least 10 blocks long.

Sec. 6.9 The Filer Menu: M(ake 261

If you do not specify a length, the file is made as
large as it can be and occupies the largest available area
on the volume.

M(ake can be used to create .SVOL files (which contain
subsidiary volumes). When you use M(ake to create an
.SVOL file, it displays some extra prompts which are
covered in the "Subsidiary Volumes" section, later in this
chapter.

Example:

Select M(ake and respond:

Make what file ? #5:MY.FILE.TEXTi:223 EretJ

A 22-block text file is created on the volume in drive #5.
It is created in the first unused area which is at least 22
blocks long.

262 The Filer Chap. 6

N(ew

N(ew cancels the workfile status of the current workfile.
Temporary (unsaved) workfiles are removed by N(ew.

How to use it:

Select N(ew and, if your workfile is saved, you are
informed:

WorkfIle cleared

The file still exists on the disk but is no longer the
workfile. This is essentially the opposite action that G(et
performs. If you have a temporary workfile, you are
prompted:

Throw away current workfile ? Y or N ssp®!l
lillll

If you type "N", N(ew is cancelled and nothing changes. If
you type "Y", the temporary workfile(s) are removed.

Example:

You may have been using a workfile for a while and are
now ready to use a new one. Enter the Filer and, if you
want to save the work that you have been doing, use S(ave.
Then select N(ew and you are informed:

WorkfIle cleared

At this point you can G(et another workfile if you want.

Sec. 6.9 The Filer Menu: 0(n/0ff-Line 263

0(n/0ff-Line

0(n/0ff-line mounts and dismounts subsidiary volumes.
(Subsidiary volumes are covered earlier in this chapter.)

How to use it:

Select 0(n/0ff-line and the following menu is displayed:

Subsidiary Volume: M(ount» DUsmount# Cdear

If you select M(ount, these lines are displayed:

Mount what vol ? F1LE-SPEC Eretl
VOLUME-ID: FILE-NAME —> Mounted

The response must indicate an .SVOL file. If you select
Dismount, these lines are displayed:

Dismount what vol ? VOLUME-1D DLretH
VOLUME-NAME: —> Dismounted

The response must indicate a volume ID for a subsidiary
volume. That volume is dismounted.

Notice the difference between the response that is
expected for mounting and the one that is expected for
dismounting. In the first case you specify the .SVOL file,
and in the second case you specify the subsidiary volume
ID.

If you select C(lear, all mounted subsidiary volumes are
dismounted.

264 The Filer Chap. 6

Example:

If you have a disk on which you have 5 subsidiary volumes,
you can mount all of them using the equal sign wild card:

Subsidiary Volume: M(oun+» D(
Mount what vol ? HARDSK:».SVO
HARDSK:DOCS1.SV0L —>
HARDSK:D0CS2.SVOL —>
HARDSK:UTILS.SVOL —>
HARDSK:D_BASE.SVOL —>
HARDSK:PLAY.SVOL —>

After this operation DOCS1:, DOCS2:, UTILS:, DEBASE:,
and PLAY: are all on-line. The V(olumes activity can be
used to see which device numbers these volumes are
assigned. (The equal wild card is discussed in the "Wild
Cards" section later in this chapter.)

Sec. 6.9 The Filer Menu: P(refix 265

P(refix

P(refix designates a given storage volume as the default
disk (see Section 4.7, page 147).

How to use its

Select P(refix and these lines are displayed:

Prefix titles by what vol ? VOLUME-ID Eretl
Prefix Is VOLUME-ID

The response to the prompt indicates the volume you wish
to designate as the default disk.

If you P(refix to a device number, the disk in the drive
(if one is present) becomes the prefixed volume. If there is
no disk in the drive, the device itself (e.g. #5:) is used as
the prefix. This means that whatever disk you place in the
prefixed drive is the prefixed volume.

Example:

If you are doing a lot of work with files on a disk called
DISK2:, you can respond to p-System prompts in this
fashion:

Transfe
Remove

file ? DISK2iMY.FILE , DI$K2:MY.FILE
le ? DISK2»ANOTHER,FILE Eretl

266 The Filer Chap. 6

However, if you use P(refix like this:

Prefix titles by .hat vol t DISK2: IretI
-v- ■ v . ' S’m

you can then answer these prompts with
effort:

less thought and

Transfer what file ? MY.FILE , MY.FILE.BACK Kretl
Remove what file ? ANOTHER.FILE Eretl

Sec. 6.9 The Filer Menu: R(emove 267

R(emove

R(emove deletes one or more files from the directory of a
storage volume.

How to use it:

Select R(emove and these lines are displayed:

Remove what file ? FILE-SPEC IretJ
VOLUME-NAME: FILE-NAME —> removed
Update directory ? Y or N

The response to the first prompt should indicate the
file that you want removed.

The second line indicates the action that is taking
place.

The third line asks if you are certain that you want to
remove the indicated file. (This is a double check.) If you
type ”Y”, the file is removed; otherwise it is not.

You should not use R(emove to delete temporary
workfiles. Always use N(ew for this.

Wild cards may be used with R(emove. They allow you
to remove several files at once. See the ’’Wild Cards”
section, later in this chapter, for more information about
this.

268 The Filer Chap. 6

Example:

To remove OLD.FILE.TEXT from the volume in #5, use
R(emove as follows:

Remove what file ? f5tOLP.FlLE.TEXT (Eretl
MYDISKtOLD.FILE.TEXT —> removed
Update directory

Sec. 6.9 The Filer Menu: S(ave 269

S(ave

S(ave changes the temporary workfiles (SYSTEM.WRK.TEXT
and SYSTEM.WRK.CODE) into permanent workfiles
(sometimes called named workfiles).

How to use it:

Select S(ave and, if you have any temporary workfiles, one
or more of the following lines are displayed:

Save as VOLUME-NAME:OLD-FILE-NAME ? Y or N
Save as what file? FILE-SPEC (Eretl
Text file saved
Code file saved
Text & Code file saved

The first prompt is only displayed if you initially used
G(et to designate the workfile. This prompt is asking you
if you want to save the workfile under its original name.
If you do, the original workfile is removed.

If you type TTN" for the first prompt, or if you didnTt
designate the workfile with G(et, the second prompt is
displayed. It asks you for the name to give the saved
workfile. Respond with any proper file name that you
want, but do not include a suffix (.TEXT or .CODE).

One of the last three lines is then displayed. This
indicates that a text file, a code file, or both have been
saved as the permanent workfile.

If you don!t have any temporary workfiles when you
select S(ave, you are simply notified:

270 The Filer Chap. 6

Workflle Is already saved

If you donTt have any workfile at all, you are informed:

No workflle to save

After a file is saved, it remains your workfile. In
order to cancel its workfile status, you should use N(ew.

You can save your workfiles on the system disk (where
the temporary versions reside) or on some other disk. If
you save them on the system disk, the names of the
SYSTEM.WRK files are actually changed to the names that
you want. If you save your temporary workfiles on another
disk, the SYSTEM.WRK files still remain as they were
(although permanent versions of them now exist elsewhere).

Example:

You may be developing a program using workfiles. If your
program is working well so far, you might want to save it
in its current state before adding more material that could
cause it to fail. To do this, enter the Filer, select S(ave,
and indicate the programs file name:

Save as what file ? PROGRAM ffretH
Text 4 Code file saved wm

; '

glPip ! I
k : .

The files PROGRAM.TEXT and PROGRAM.CODE are
now your permanent workfiles. If you enter the Editor,
PROGRAM.TEXT is loaded into the workspace. You can
then use Q(uit U(pdate and a new SYSTEM.WRK.TEXT is
created. You can use the compiler to create a new
SYSTEM.WRK.CODE. However, the old text and code
versions remain unaltered as PROGRAM.TEXT and
PROGRAM.CODE.

Sec. 6.9 The Filer Menu: Transfer 271

T(ransfer

Transfer moves files from one place to another. It can
also move a volume onto another volume. In addition,
Transfer can print or display files by sending them to the
printer or to the console.

How to use its

To transfer a file, select Transfer and one or more of
these prompts are displayed:

Transfer what file ? FILE-SPEC Iretj
To where ? NEW-FiLE-SPEC IretJ
Remove NEW-VOLUME-NAME:NEW-FILE-NAME ? Y or N
VOLUME-NAME tFILE-NAME —> NEW-VOLUME-NAME:NEW-FILE-NAME

The first prompt requests a file to be transferred.

The second prompt asks where to transfer that file.

If you indicate a destination file which already exists,
the third prompt appears and asks if you want to remove
the existing file. If you type "YIT, the Filer removes it
before placing the new copy on the disk. If you type TTNTf,
the Transfer activity is cancelled because two files with
the same name canTt exist on the same volume.

The fourth line indicates that the transfer was
successful.

Usually, the source file remains undisturbed. It is only
removed when the destination file is placed on the same
disk as the source file and given the same name. Even
then, you are asked if you want to remove the source file
(since it conflicts with the destination file name).

272 The Filer Chap. 6

Wild cards can be used in conjunction with Transfer.
With wild cards, you can easily transfer several files from
one disk to another. This is a very convenient method of
maintaining back up disks. (See the ’’Wild Cards” section
later in this chapter.)

Transfer can also copy an entire storage volume onto
another storage volume. To do this, respond to the
Transfer prompts with volume ID’s instead of file names.
When you do volume-to-volume (or disk-to-disk) transfers,
one or more of these prompts are displayed:

mmm

Transf
To wh
Transf

what file ? VOLUME-ID Iretl
? NEW-VOLUME-ID IretJ
blocks ? Y or N

s to transfer ? ### IretJ
ISTlNG-VOLUME-NAME s ? Y or N

The first and second prompts ask for the source and
destination volumes.

The third prompt asks if you want to transfer the total
number of blocks on the source volume. (This prompt only
appears if a valid directory exists on the source volume.)

If you don’t elect to transfer the entire source volume,
the fourth prompt asks how many blocks you do want to
transfer.

The final prompt verifies that you want to go through
with the transfer. If you do, any existing information on
the destination volume is overwritten. (This prompt only
appears if a valid directory already exists on the
destination volume.)

NOTE: When doing a volume-to-volume Transfer, make sure
that the two volumes do not have the same name. The
p-System cannot distinguish between them if they do. When
you Transfer a master disk onto a back up disk, the back
up disk ends up with the same name as the master. You
should C(hange the back up disk's name before performing

Sec. 6.9 The Filer Menu: Transfer 273

the operation again.

NOTE: You should only do a volume-to-volume Transfer
between disks of the same storage capacity. This is
because the disk directory (which indicates the storage
capacity of the volume and the locations of the files) is
directly copied from the source disk to the destination disk.
If the destination disk does not have enough room to
contain the rest of the disk image, the directory will be
incorrect.

It is possible to indicate the source and destination
files in response to the first Transfer prompt by using a
comma, like this:

Transfer what ff le ? FILE-SPEC , NEW-FILE-SPEC t[ret]]

This can be convenient because it is easier to type. Also,
you can use Ibsl to erase any mistake that you make while
typing the source file (because you havenTt typed IretB
yet).

In order to print a file, you can Transfer it to
PRINTER: or #6:. In order to display a file on your
computer^ screen, Transfer it to CONSOLE: or #1:. In
general, only text files should be transferred to the printer
or console. Most other types of files are not intended to
be viewed in this way.

It is possible to Transfer your input at the keyboard to
a communication device or to a disk file. To do this,
Transfer CONSOLE:, or #1:, to the desired destination.
When you have finished typing your input, type [[eofl. If,
for example, you Transfer CONSOLE: to PRINTER:, the
p-System waits for you to enter something at the keyboard.
When you have finished and you type Eeofll, your input is
printed.

274 The Filer Chap. 6

Example:

To Transfer a file called MY.FILE.CODE from your system
disk to the disk in drive #5:, use Transfer like this:

Transfer what file ? *MY.FILE.CODE I ret I
To where ? #5:MY.FILE.C0DE Iretl
- — -,LE>C0DE -_> DISK2:MY.FILE.CODE

In order to print a file called LISTING.TEXT, use
Transfer like this:

Transfer what file ? LISTING.TEXT Eretl
To where ? PRINTER: IretJ

If you want to test your printer to see that it is
correctly interfacing with your computer, you can use
Transfer like this:

Transfer what file ? CONSOLE
To where ? PRINTER: Iretl
THIS IS A TEST (Eretl (EeofJ

If all goes well, ’’THIS IS A TEST” is printed.

Sec. 6.9 The Filer Menu: V(olumes 2 ri l

V(olumes

V(olumes, abbreviated V(ols, displays the volumes that are
on-line. A storage volume is on-line if the disk is
correctly placed in a drive. A communication volume is on¬
line if it is properly connected and the p-System is able to
access it.

How to use it:

Select V(olumes and this display appears:

Vols on-1 In©
1 CONSOLE:
2 SYSTERM:
4 # VOLNAME: [###3
5 # VOLNAME: [###]
6 PRINTER:
7 REMIN:
8 REMOUT:

Root vol Is - VOLNAME:
Prefix Is - VOLNAME:

The first column shows the device numbers of the on-line
volumes. In the next column, the volume names are listed.
Storage volumes show a number sign (”#") between the
device number and the volume name. In this example
display, devices #4: and #5: are the only storage volumes
on-line. Following a storage volume name, its maximum
storage capacity in blocks is displayed between square
brackets, "[" and T,]TT. The other devices shown are the
standard communication volumes (see Section 4.11,
page 155).

The !,root vol,T is the system disk (the disk that you
booted with). The prefix volume is the default volume (see
Section 4.7, page 147).

276 The Filer Chap. 6

Example:

If you select V(olumes, this display might appear:

Vols on-lIne
1 CONSOLE:
2 SYSTERM:
4 # MYDISK; [320]
5 # DISK2: [6403
6 PRINTER:
7 REMIN:
8 REMOUT:
9 # BIG: C10000]

10 § RAMDISK: [240]
Root voI Is - MYDISK:
Prefix Is - BIG:

This shows all of the standard communication devices on¬
line. It also shows four storage devices. There are two
floppy disks: a 320 block disk in #4 and a 640 block disk
in #5. Device #9 contains a hard disk, called BIG:, which
has a 10,000 block storage capacity. And, #10 is a RAM
disk (a virtual disk which exists in main memory). The
system disk (called ’’root vol” here) is MYDISK:. The
default disk (called ’’prefix” here) is BIG:.

Sec* 6.9 The Filer Menus W(hat 277

W(hat

W(hat tells you the status of your workfile, if you have
one.

How to use it:

Select W(hat, and one of these messages appear:

Workfile Is VOLUME-NAME:FILE-NAME
Workfile Is VOLUME-NAME:FILE-NAME (not saved)
Not named (not saved)
No workfIle

The first and second messages indicate your current
workfile. There may be a text and/or code version of this
file. In the second case, the phrase "not saved" indicates
that there is a temporary version of the workfile.

The third message indicates that your workfile is a
temporary workfile (SYSTEM.WRK.TEXT and/or
SYSTEM.WRK.CODE).

The fourth message simply indicates that you do not
currently have a workfile.

Example:

If you G(et a file called MY.PROG.TEXT and then select
W(hat, you are informed:

Workfile Is VOLNAME:MY.PROG

278 The Filer Chap. 6

If you edit that file and use Q(uit U(pdate to leave the
Editor, the temporary version of MY.PROG.TEXT is created.
Now, if you enter the Filer and select W(hat, you are
informed:

Workflle Is VOLNAMEjMY.PROG (not saved)

This reminds you that the most current version of
MY.PROG is not S(aved under an explicit name.

Sec. 6.9 The Filer Menu: X(amine 279

X(amine

X(amine attempts to fix bad blocks on a disk.

How to use it:

Select X(amine, and the following prompts appear:

Examine blocks on what vol ? VOLUME-ID (TretID
Block-range ? ###-### EretJ
Flle{s) endangered:
FILE-NAME-1 ## §§

FILE-NAME-2 ## ##

Fix them ? Y or N
Block H may be ok
Block H Is bad

Mark bad blocks ? (Y/N) Y or N

The first prompt asks you to designate the volume that
you want to examine.

The second prompt asks which blocks on that volume
are to be checked. In response to this prompt you can
enter a single number or two numbers separated by a
hyphen. If you enter a single number, that block is
examined. If you enter two numbers with a hyphen, those
two blocks and all blocks between them are examined.

If any files overlap the block range, they are listed as
”File(s) endangered.” In this case you are asked if you
want to ”Fix them.” These files are endangered because
X(amine may destroy information contained in any of the
blocks that are examined. (Because of this danger, you
should only examine blocks that are apparently bad,
according to the B(ad blocks activity.)

280 The Filer Chap. 6

If you elect to proceed (or if no files were endangered)
X(amine attempts to fix any problems by reading and
writing to each block in the block range several times.
The block numbers are displayed followed by "may be ok"
or "is bad." If the message "may be ok" is displayed, it is
likely that the block is fine. You should check to be sure
by using B(ad blocks again.

If any blocks are bad, the final prompt, above, asks if
you want to mark them. If you do, the bad blocks are
marked by placing a .BAD file over them. (You are warned
if existing files must be removed in order to mark the bad
blocks.) A bad file created by X(amine has the name:

BAD.#####.BAD

where "#####" is the block number. The p-System does
not move such a file when K(runch is used. This means
that it is safe to K(runch a disk with bad blocks as long as
they are marked. You may decide to discard disks with
bad blocks just to be safe, however. You might also try
formatting the disk again in an attempt to fix the bad
blocks.

Example:

If the B(ad blocks activity indicates that blocks 25 and 27
are bad, you could use X(amine like this:

Examine blocks on what vol ? MY DISK; DLretll
Block-range ? 25-27 Iretl
Flle(s) endangered:
PROGRAM.CODE 24 32
Fix them ? Y
Block 25 may be ok
Block 26 may be ok
Block 27 Is bad
Mark bad blocks (files will be removed!) ? (Y/N) Y

.

■■■

In this example, PROGRAM.CODE (which occupies blocks 24
through 32) overlaps the bad blocks. Even though X(amine
was able to fix block 25, block 27 was beyond repair. In
order to mark block 27, PROGRAM.CODE must be removed.
(Hopefully, there is a back up copy of PROGRAM.CODE on
another disk!)

Sec. 6.9 The Filer Menu: Z(ero 281

Z(ero

Z(ero places a new directory on a storage volume. This
new directory is empty, indicating that no files currently
exist on the disk.

How to use it:

Select Z(ero and these prompts are displayed:

Zero dir of what vol ? VOLUME-ID Iretl
Destroy V OLUME-NAME: ? Y or N
DuplIca+e dir ? Y or N
Are there ### blks on the disk ? (Y/N) Y or N
of bloc ks on the disk ? ### Cretl
New voI n ame ? NEW-VOLUME-NAME: tret])
NEW-VOLUW IE-NAME: correct ? Y or N
NEW-VOLUM E-NAME: zeroed

•

The first prompt asks which volume is to be Z(eroed.

The second prompt only appears if the volume already
has a directory (that is, if it is not blank). This prompt
asks if you want to overwrite the current directory. If you
do, the old files on that disk are no longer going to appear
in the directory and are essentially lost. It is usually
possible to recover them, but this can be a tedious task.

The third prompt asks if you want a duplicate directory
(see Section 4.8, page 148) to be maintained on the Z(eroed
volume. If you do, two copies of the disk directory are
kept on the new volume for safety.

The fourth prompt only appears if the volume already
has a directory. It displays the current size of the volume,
in blocks, and asks if you want the new directory to
indicate the same size.

282 The Filer Chap. 6

If you donTt want the disk to show that number of
blocks (or if there is no current directory) the fifth prompt
asks for the size that you would like. Usually, you should
respond to this prompt with the maximum capacity of your
disks. (Refer to the inside front cover of this book.)

The sixth prompt asks for the new volume name.

The second-to-last prompt verifies that you want the
name you entered. This is your last chance to cancel the
Z(ero activity without actually affecting the disk in
question.

The final message indicates that the volume has been
successfully Z(eroed.

NOTE: Most computers require that a blank diskette be
"formattedn by a disk formatting utility before it can be
Z(eroed by the Filer (and subsequently used by the p-System
in general). In some cases, the disk formatting utility
performs the initial Z(ero operation on the disk for you.

.Example:

If you are initializing a blank disk, you might use Z(ero like
this:

Zero dir of what vol ? #5: Iret.ll
DuplIcate dir ? N
§ of blocks on the disk ? 320
New vol name ? MYDISKt IretJ
MYDISK: correct ? Y
MYDISK: zeroed

Sec, 6.10 Subsidiary Volumes

6.10 SUBSIDIARY VOLUMES

283

This section covers a more advanced topic known as
subsidiary volumes. A subsidiary volume is a file that can
be used as if it were a separate disk altogether. It has its
own directory and may contain its own files. The disk that
contains the subsidiary volume is called the principal
volume.

Subsidiary volumes are especially useful when dealing
with large capacity disks. Using subsidiary volumes, you
can divide such disks into logical portions. For example,
you can have one subsidiary volume for personal programs,
one for professional use, and so forth.

Also, the p-System is able to store many more files
than it otherwise could. A volume is able to hold, at most,
77 files with the current p-System. This is far too few files
for a large capacity disk. However, each subsidiary volume
is able to hold 77 files of its own. This means that you
could conceivably have as many as 77 subsidiary volumes
with as many as 77 files on each.

The files that contain subsidiary volumes use the the
name of the subsidiary volume and must contain 7 or fewer
characters. Here are some valid file names and
corresponding subsidiary volume names:

File Name Subsidiary Volume It Contains

WORK.SVOL
PLAY.SVOL

WORK:
PLAY:

MEMOS_l.SVOL
THESIS.SVOL

MEMOS_l
THESIS:

Figure 6.1 gives you an idea of the structure of
subsidiary volumes. It shows a directory on the principal
volume which includes an .SVOL file. The directory within
the .SVOL file is shown along with the files contained
within the subsidiary volume.

284 The Filer Chap. 6

4|- SUBSIDIARY <
DIRECTORY

◄- LETTER.TEXT

4- PROGRAM.CODE

DIRECTORY

ORDINARY FILE (# i)

SVOL FILE (# 2)

ORDINARY FILE (# 3)

Figure 6.1

In order for a subsidiary volume to be used, it must be
mounted. Mounting a subsidiary volume is similar to
bringing an ordinary disk volume on-line. A subsidiary
volume is not necessarily mounted just because the
corresponding .SVOL file resides on an on-line volume.

There are two ways that you can mount a subsidiary
volume. The first way is to simply have the principal
volume on-line when the p-System is booted or reinitialized.
The initialization process mounts, as far as it is able to, all
of the subsidiary volumes that are found on all of the on¬
line principal volumes.

You can use the 0(n/0ff-Line activity (described with
the other Filer activities) to manually mount subsidiary
volumes. You can also use this activity to dismount
subsidiary volumes.

Sec. 6.10 Subsidiary Volumes 285

NOTE: There is a limit to the number of subsidiary volumes
that you can have mounted at one time. This limit can be
set by you and is subject to memory constraints and
tradeoffs. It is beyond the scope of this book to go into
this, however. See Chapter 9 for further reading about
subsidiary volumes and the Setup utility.

You should attempt to keep a principal volume on-line
as long as you are using a subsidiary volume that resides on
it. This is a safety precaution since, under certain
circumstances, it is possible to confuse the p-System about
a subsidiary volume if you remove the principal volume and
replace it with some other disk.

The V(olumes activity (described with the other Filer
activities) has some special provisions for subsidiary
volumes. It displays additional information for subsidiary
volumes. The name of the principal volume is given. Also,
the location of the subsidiary volume is shown. The
following is an example:

Vols on-line
1 CONSOLE:
2 SYSTERM:
4 # SYSTEM: [320]
5 # PASCAL:
6 PRINTER:
7 REMIN:
8 REMOUT:

C 3203

12 # HARDISK: [200003
13 # MY SYOL: [30003 on volume HARDISK: starting at block 2000
14 # ANOTHER: C 25003 on volume HARDISK: starting at block 5000

Root vol Is - SYSTEM:
Prefix Is SYSTEM:

In this example, a 20,000 block disk, called HARDISK:,
is on-line as device #12. The two subsidiary volumes,
MYJSVOL: and ANOTHER:, are located on HARDISK: at
the indicated starting blocks. The size of each subsidiary
volume, in blocks, is shown (e.g., 3000 for MY_SVOL) just
as it is for any other storage volume. The device numbers
are also shown as they are for the rest of the volumes; in
this example, MY_SVOL: is device #13.

286 The Filer Chap. 6

In order to create an .SVOL file, you should use M(ake
(which is described with the other Filer menu items).
Whenever you M(ake an .SVOL file, the Filer realizes that
you want to create a subsidiary volume. In order to do
this, it asks you one or two extra questions:

Make what file ? VOLNAME.SVOL [###] EretH
Zero subsidiary volume directory ? Y or N
Duplicate dir ? Y or N

8 M! BWi8PwiiiWiii

The response to the first prompt should be the name of
the subsidiary volume and may include the size
specification.

If a subsidiary volume directory previously existed
where you are now creating the .SVOL file, you are asked
if you want to Z(ero the old directory. If you do, the new
subsidiary volume will contain no files. If you donTt, the
new subsidiary volume will contain the same files that the
old subsidiary volume did.

The third prompt asks if you want a duplicate directory
to be maintained on the subsidiary volume. Duplicate
directories are a safety precaution that you may use if you
wish.

When a subsidiary volume is created with M(ake, it is
mounted automatically unless you have already mounted as
many subsidiary volumes as your system configuration
allows.

Sec, 6.11 Wild Cards 287

6ai WILD CARDS

Wild cards allow you to refer to more that one file in a
shorthand fashion. They are convenient to use in
conjunction with many of the Filer activities. Wild cards
can help you to avoid excessive typing and the errors that
may result.

There are three wild card symbols: equal sign (=),
question mark (?), and dollar sign ($). They can be used as
part of a file name when you are responding to Filer
prompts.

The equal sign matches any sequence of characters.
For instance:

A.PROG=

matches all of the following:

A.PROG.TEXT
A.PROG.CODE
A.PROGRAM
A.PROG

The R(emove activity, for example, removes all of those
files (if they exist to begin with) if you enter this
response:

Remove what file? . ->vi

mm tW«s6«ii«Ss«ES®S

The equal sign, by itself, designates all of the files on
a disk. For instance, if you respond to the R(emove
prompt like this:

Remove what file ? = [[ret33

or

Remove what file ? MYDISK: = EretJ

288 The Filer Chap. 6

all files are removed from the prefix disk or from MYDISK:,
respectively.

The question mark behaves just like the equal sign
except that you are asked, for each matching file, whether
you want that file included in the operation. For example,
you can use R(emove like this:

Remove what file? A.PROG? EretH
Remove A.PROG.TEXT ? Y> N> or EescH
Remove A.PROG.CODE ? Y, N, or EescH
Remove A.PROGRAM ? Y» N» or EescH
Remove A.PROG ? Y» N» or EescH
Update directory ? Y or N

For each match, you are asked if you want to remove that
particular file. You should respond to each prompt with
"Y" for yes, "N" for no, or Eescl to discontinue this series
of prompts at any point. Typing EescB exits the R(emove
activity altogether if you have not indicated that you want
to remove any files so far. If you have indicated that one
or more files are to be removed, typing Uescll, skips to the
"Update directory?” prompt. If you donTt update the
directory, none of the files are removed.

The dollar sign wild card indicates "the same file name
as before." It is only used with Transfer (although the
compilers and assemblers can use this wild card as well).
Transfer prompts you for a source file and a destination
for that file. If you indicate dollar sign as the destination,
the original file name is given to the transferred file. It is
not necessarily transferred to the same volume as the
source file, however. The volume ID is independent of the
dollar sign wild card. As an example, you might use
Transfer like this:

Transfer what file ? V0L1;FILE.NAME EretH
To what file ? V0L2:$ EretH
V0L1:FILE.NAME —> V0L2:FILE.NAME

Sec. 6.11 Wild Cards 289

This saves you from having to retype the destination file
name. You could also use Transfer like this:

Transfer what file ? V0L1:A.PR0G= (Eret2
To what file ? V0L2;$ (Eretl
V0L1jA.PR0G.TEXT —> V0L2:A.PR0G.TEXT
VOL1:A.PROG.CODE —> VOL2:A.PROG.CODE
VOL1:A.PROGRAM --> V0L2:A.PROGRAM

This transfers all files on V0L2: that match A.PROG= to
VOL2:. It gives them the same name that they originally
had.

If there is a source and destination, as in the case
with Transfer and C(hange, wild cards must be used on
both sides, or not at all. The following Transfer operation
is not correct because several files cannot be transferred
to one file:

' 'V. / :

Transfer what file ? A.PR0G= Iretl
To what file ? MYDtSK:A.PR0G.TEXT IretJ

The single exception to this rule is that a dollar sign
may be used as the destination in Transfer for a file which
is specified without wild cards (as shown above).

The Filer activities that can use wild cards are:

C(hange
E(xtended list directory
L(ist directory
0(n/off line
R(emove
Transfer

The next two sections demonstrate useful operations
that can be performed by using wild cards in conjunction
with R(emove and Transfer.

290 The Filer Chap. 6

Removing Several Files from a Volume

If you want to remove every file from a volume, you can
use R(emove like this:

Rewove what file ? .
V0LNAME:A.FILE.TEXT

LNAME:
—>

VOLNAME:A.FILE.CODE —>
VOLNAME:ANOTHER.FILE —>
VOLNAMEjYET.ANOTNER —>
VOLNAMEjLAST.FILE.TEXT —>
Update directory ? Y or N

.

wiiiiin
siiiffiimii

'' f' -v v

mSKm

:■ .

The prompt at the end is a double check. If you type TfY”,
all of the files are removed. If you type tTN,T, nothing is
removed.

You can remove all of the text files, or all of the
code files on a disk like this:

Remove what file? VOLNAMETEXT Eretl

Remove what file ? “.CODE

The first response removes all text files on VOLNAME:.
The second response removes all code files on the prefix
disk.

You can also use the question mark wild card so that
you are prompted, for each file, whether or not it should
be removed. This is demonstrated in the discussion about
the question mark wild card above.

Backing Up Disks Using T(ransfer

There are two convenient ways to use Transfer to back up
the files on a disk. The first is to do a disk-to-disk
transfer. This amounts to transferring one volume to
another and is described under Transfer.

Sec. 6.11 Wild Cards 291

The other way is to do a file-by-file Transfer using
wild cards. For example, you could use Transfer like this:

Transfer what file ? MASTER:s Eretl
To where ? BACKUP: S Cretl
MASTER:FILE.NAME. T —> BACKUPS ILE.NAME.1
MASTER:FILE.NAME.2 —> BACKUP:FILE.NAME.2
MASTER:FILE.NAME.3 —> BACKUP:FILE.NAME.3

etc.

If an existing file on the destination disk has the same
name as a file being transferred, you are asked if you want
to remove the existing file. If you decide not to remove
it, the corresponding file from the source disk is not
transferred. Otherwise, the transfer goes through. In
either case, the Filer then goes on to the next file on the
source disk. (This practice of asking you if you want to
remove a file that has the same name is a standard safety
precaution used by Transfer. In order to save time and
effort, you may want to remove any matching files on the
backup disk before you do this sort of Transfer operation.)

292 The Filer Chap. 6

6.12 FILE AND DIRECTORY RECOVERING

There are several ways that files and directories can be
lost. Files can be lost, for example, if you accidentally
remove them. A directory can be lost if you
unintentionally Z(ero a disk, or if you somehow overwrite
the directory.

There are three utility programs which can assist you
in recovering lost files or directories. They are the
Copydupdir, Markdupdir, and Recover utilities. This section
describes how to use these utilities.

The Copydupdir and Markdupdir Utilities

Copydupdir and Markdupdir are used in conjunction with
duplicate directories (see Section 4.8, page 148). If you
are maintaining a duplicate directory on a disk, Copydupdir
can copy it into the main directory if necessary. If you
arenTt maintaining a duplicate directory, Markdupdir can
create one for you.

When you X(ecute Copydupdir, the following prompts
are displayed:

Duplicate Directory Copier [3
Enter drive # of user's disk (4,5.9,10,11) ? DEVICE-NUMBER IretJ
Are you sure you want to zap directory of VOLNAMEs {blocks 2-5) ? Y or N
Directory copy Is complete. Type <ret> to exit.

The first line identifies the Copydupdir utility.

The second prompt asks for the diskTs device number.
This is the disk that will have the duplicate directory
copied into the main directory. Do not include the number
sign or colon when you enter the device number.

The third prompt asks you to verify that you want to
"zap" that volumeTs directory. You should be aware that
when the duplicate directory is copied, the current main
directory will be destroyed.

Sec. 6.12 File and Directory Recovering 293

The final line indicates that the copying is complete.
When you type Iretll, Copydupdir is exited.

If a duplicate directory is not currently being
maintained on the disk, you are warned that this is the
case. If you go ahead with the copying, the contents of
blocks 6 through 9 are written into the main directory. It
is important that a correct duplicate directory exists in
that location because, otherwise, the newly copied directory
will be invalid.

When you X(ecute Markdupdir, the following prompts are
displayed:

Duplicate Directory Marker []
Enter drive # of user’s disk (4,5,9,10,11) ? DEVICE-NUMBER Iretl
A duplicate directory Is not being maintained on V0LNA*€s
WARNING! It appears that blocks 6-9 are not free for use.

Are you sure they are free ? Y or N
Do you want the directories to be marked ? Y or N
Directories are now marked as duplicate. Type <ret> to exit.

The first line identifies the Markdupdir utility.

The second prompt asks for the diskTs device number.
This is the disk that will be marked as having a duplicate
directory.

The third line indicates that a duplicate directory is
not currently being maintained on the disk. (If one is, you
are notified of that, and the Markdupdir utility is exited.)

The next two lines are a warning. They indicate that
an existing file may be overlapping blocks 6 through 9. If
this is the case, that file will be overwritten when you
create a duplicate directory. If the disk does contain a
file there, you should move it before marking the directory.
This warning always appears, even if there is no file in
that area.

The second to last prompt verifies that you want to
mark the directory as duplicate.

294 The Filer Chap, 6

The final prompt notifies you that a duplicate directory
will now be maintained.

The Recover Utility

Recover is useful for recovering files that have been lost.
This utility looks at the directory and informs you of the
files that currently appear there. It then looks through the
disk and locates areas that resemble text files or code
files. (Other sorts of files cannot be recovered since they
do not have a distinguishable format.) The files that are
found are entered into the directory, if you want.

When you execute Recover, these prompts appear:

■ ,' •. ■: ■:>. , / V v:,'-, r : % f■. », i? Jg r •
Recover C 3
USER'S DISK IN DRIVE § (0 exits): DEVICE-NUMBER Ireil
USER'S VOLUME-ID: VOLUME-NAME Eret31
FILE.NAME.1 found
FILE.NAME.2 found

File DUMMY01X.TEXT Inserted at blocks Ht-tt*
File DUMMY02X.TEXT Inserted at blocks ###-#*#
File FILE.NAME.CODE Inserted at blocks ###-###

GO AHEAD AND UPDATE DIRECTORY (Y/N) ? Y or N

The first line identifies the Recover utility.

The second line asks for the device number of the disk
to be recovered.

The third line requests a volume name. This name will
be recorded on the disk when its directory is updated.

Next, the names of all files currently listed in the
directory are displayed.

Following these names is a prompt asking you if there
are still some important files missing. If you indicate that
there are, Recover begins to look for lost files. The file

Sec. 6.12 File and Directory Recovering 295

names are displayed followed by a block range indicating
where the files are located. Text files are named
DUMMY01X, DUMMY02X, and so forth. This is because
there is no way to tell what name they originally had.
You need to examine the contents of these files (perhaps
using the Editor) to identify them. You will also have to
determine which copy of a particular file is the most
recent version. Code files are given names that correspond
to the program contained within them.

The final prompt asks if you want to update the
directory. If you elect to do so, the recovered files are
entered into the directory. If you donTt, the directory
remains as it was before Recover was executed.

MODULES:

A THEME OF THE P-SYSTEM

7.1 INTRODUCTION

The old saying, "divide and conquer," is just as true for
modern software engineering as it was for the ancient
battles fought by the man who is said to have first used
the phrase (Julius Caesar). In software work, instead of
dividing enemy armies, we divide large programs into
modules. But "conquering" of one sort or another is still
the intended result.

This chapter discusses the ways in which this well-
known principle is applicable to the p-System. We arenTt
trying to provide a "cookbook" for using modules in the
p-System. Instead, we concentrate on strategies—the
strategies that guided the original design of the p-System
and the strategies that you can take advantage of in your
use of it.

296

Sec, 7.1 Introduction 297

This chapter should be most valuable if you intend to
make serious use of the p-System, particularly in developing
programs. No matter how you intend to use your p-System,
we hope you find this discussion interesting and valuable.

Since youTre probably not much interested in
"conquering” in the military sense, here are some more
directly useful restatements of the principle:

o "Divide and isolate." The p-System is divided into
modules. One result is the isolation of the small
portion of the System that must be changed when it is
moved among dissimilar computers. This means that
most of the components of the p-System, and most
p-System application programs, can be run without
change on almost any kind of personal computer.

o "Divide and understand." The p-System makes it easy
for you to break large programs into smaller modules.
Understanding all the modules individually is generally
easier than dealing with the single large program.

o "Divide and reuse." The modules of a program are not
only easier to understand; if they are carefully
designed, they may even be usable in other programs!
This leads to a pleasant prospect for you as a p-System
programmer: major parts of a large program may
already exist (as previously written modules) before you
start work!

o "Divide and manage." Ready-to-run p-System programs
are composed of modules called segments. When a
program is executed, only segments that are actively
directing the computer need to be in main memory.
Thus the p-System can handle programs that are bigger
than the available main memory space.

In the remainder of this chapter, we explore these four
variations of "conquer" in each of three general areas of
the use of modules in the p-System. The first topic is the
p-System portability strategy.

298 Modules: A Theme of the p-System Chap. 7

7.2 USING MODULES TO ACHIEVE PORTABILITY

We must first address some basic questions: "Why is
portability hard to achieve?" "Why canTt all software run
on any computer?" The reason is that most brands of
computers are quite different in the details of their
construction and operation, even though they may look
similar and serve similar functions.

For instance, two personal computers may contain
different kinds of microprocessors—the tiny silicon chips
that direct a small computer^ activities. Each kind of
microprocessor has a distinct vocabulary of instructions that
it obeys. These instruction sets may be as different as
French is from English. It shouldnTt be surprising,
therefore, that you have to choose the right set of
instructions in order to communicate properly with a
microprocessor.

Even when two computers contain the same kind of
microprocessor, there can still be portability barriers,
because their style of interaction with input/output
peripherals (such as diskette drives or the console display
and keyboard) may be different. In other words, the
"languages" of input/output interaction may differ, even if
the central processor languages are compatible.

Examples of these two kinds of differences among
personal computers are shown in Figure 7.1, in which
several computers made by one company (Texas Instruments)
are shown. The two computers on the left use the same
kind of microprocessor instruction set, but different kinds
of peripherals, so their edge patterns are different. The
third computer, the TI Professional Computer, is different
from the other two in the processor language it uses, as
well as in the peripheral conventions it expects.

The figure also shows the p-System with an application
program for each computer. Since the same p-System can
be used in all three configurations, the edge patterns on
the System are the same. The figure is not complete,
however, since no direct connection exists between the
p-System and the host computer hardware.

Sec. 7.2 Using Modules to Achieve Portability 299

P-CODE
APPLICATION

PROGRAM

P-CODE
APPLICATION

PROGRAM

T1 990/4
(9900)

T1 HOME COMPUTER
(9900)

T 1 PC
(8088)

Figure 7.1

The secret of the portability of the p-System is the use of
a foundation software module which deals with the host
computer microprocessor and its peripherals, while isolating
the rest of the p-System from the details of this hardware.
Figure 7.2 shows this module in place. Notice that it
adapts to the various peculiar interface patterns, while
presenting the same edge pattern to the p-System.

300 Modules: A Theme of the p-System Chap, 7

P-CODE
APPLICATION

PROGRAM

P-CODE
APPLICATION

PROGRAM

P-CODE
APPLICATION

PROGRAM

P-MACHINE
EMULATOR

(9900)

TI 990/4
(9900)

P-MACHINE
EMULATOR

(9900)

TI HOME COMPUTER
(9900)

P-MACH INE
EMULATOR

(8088)

T I PC
(8088)

Figure 7.2

This foundation module is the p-machine emulator (PME).
This emulator turns the host computer into a p-machine.
All p-machines work alike, regardless of differences in the
host computers on which they run.

The p-machine is an idealized computer architecture
that was designed as a foundation for the p-System.
Instructions for the p-machine are called p-code. The
compilation process that we dealt with in Chapter 3
translates high level language source statements (written in
UCSD Pascal or FORTRAN-77) into p-code. The resulting
p-code program can then be executed to accomplish some
useful task such as producing a series of payroll checks
("p-checks?").

The p-machine contains a smaller module, called the
Basic I/O Subsystem (BIOS). This module handles the
peripherals of the host computer and serves to isolate the
bulk of the PME from dependence on those peripherals.

Sec. 7.2 Using Modules to Achieve Portability 301

When the p-System in installed on a particular type of
computer, an appropriate PME and BIOS must be configured.
This task involves some sophisticated programming.
Fortunately, it has already been done for most of the
popular personal computers. If you are interested in an
adaptation for a particular model of computer, but don!t
know a source, check the UCSD p-System Imple¬
mentations Catalog.

Because the PME and BIOS modules hide the
peculiarities of the various personal computer types, an
application program represented in p-code can be used on a
wide variety of computers. Figure 7.3 shows this wide
range. Microprocessor types are listed along the left (in
n 8-bit" and Tt16-bitfT groups). Next to each processor name
is one or two personal computers that incorporate that
microprocessor. The p-System has been implemented on all
the personal computers shown.

PERSONAL COMPUTERS USING THOSE
MICROPROCESSORS THAT RUN THE p-SYSTEM

XEROX 860 • • •

OSBORNE 1 ZENITH Z90 . . •

COMMODORE APPLE II ...

H/P 87 ...

TI HOME
COMPUTER

DEC PROFESSIONALS TERAK 8510 • . .

TI PC IBM PC ...

OLIVETTI M 20 ...

SAGE 11 CORVUS . . .
CONCEPT

Figure 7.3

What are the implications of the p-System Ts wide portability
for you? One implication is that the number of p-System
applications for your computer is not nearly so dependent
on the kind of computer you have, as it would be if you
werenTt using the p-System. Particularly, if you can use the
Universal Medium, you should benefit from the fact that
application suppliers don't have to invest a lot of effort
customizing their applications to your particular model of

8-BIT

MICRO¬
PROCESSORS

8080/85 1

Z 8 0 1

6502 1

6809 1

H/P 87 1

1 6-BIT

9900

LSI- 1 1

8086/88

Z 8 00 0

68000

302 Modules: A Theme of the p-System Chap. 7

computer. You may even become an applications supplier
yourself!

You also gain freedom of hardware choice with the
p-System. If you replace your current computer or add
additional computers in your organization, they can be
selected on the basis of hardware capabilities and cost-
effectiveness, with confidence that the p-System can
(almost certainly) be installed on the equipment you finally
select.

Furthermore, your investment in acquiring or building
p-System software for your current environment is
conserved, when you use the same software in new
hardware environments.

Finally, there is a subtle but important benefit from
the fact that tens of thousands of personal computer users
are pounding on the same software youTre using. In the
world of software, "used" goods are often more valuable
than "new" goods, because the feedback from thousands of
users can be crucial to making software more reliable.

The use of modules to achieve portability is primarily
an example of the "divide and isolate" principle. In the
next section, we discuss the use of modules during p-System
program development, where all four senses of "conquer"
(isolation, understanding, reuse, and management) can be
important objectives.

Sec. 7.3 Using Modules in Program Development 303

7.3 USING MODULES IN PROGRAM DEVELOPMENT

Some psychologists believe that there are fundamental limits
on the number of distinct ideas that a human mind can pro¬
ductively deal with at one time. They claim that the
magic number is seven (plus or minus two). For example,
consider the task of memorizing the following list of
numbers:

5742278328005551689

Unless you have special gifts of memory, you’re
probably intimidated by the thought of juggling all those
digits in your head. What if, however, we group them like
this:

574-22-7832 (800) 555-1689

Now the task is much less intimidating, because the
numbers can be recognized as Social Security and telephone
numbers. The stream of digits can be considered in groups
(six of them). The first two groups in the phone number
are particularly easy to remember, because they have
special meanings. This is Ttdivide and comprehend" in
action!

One way you can divide a program is to use a
procedure, a named group of language statements that
usually serves a coherent purpose. (The formal name of the
"procedure" construct in a particular language may be
something else. The name "subroutine" is used in
FORTRAN-77, for example.)

A procedure could, for instance, have responsibility for
requesting and accepting a calendar date from a user at
the console keyboard. A program containing this procedure
could invoke it (in many places, if necessary) by using the
procedure’s name.

Consider the program on the next page, which produces
verses of a well-known song. The program is written in
Pascal, but its operation should be clear, even if your
expertise is in some other language. The comments
(enclosed in braces "{}") should help.

304 Modules: A Theme of the p-System Chap. 7

program Nlne+yNlneBo+tlesofBeer;

(This "variable* maintains a record of the bottle count.)
var Counts Integer;

Procedure OneVerse;
begin

{Write the lines of a verse. Inserting the appropriate bottle count.)
writeIn(Count.’ bottles of beer on the wall.*);
wrlteln(Count.’ bottles of beer;1);
wrlteln(*lf one of those bottles should happen to falls’);

{Reduce the bottle count by one. and write the last line.)
Count := Count - 1;

■: - - ' '
S . wrlteln(’There’d be *,Count.’ bottles of beer on the wall.’);

wrlteln;
. , -

end;

begin
^ (4 £ '' / z > fa* h - v ^ &v> ^ > s4 a s ^

{Start with 99 bottles.)
Count s= 99;

{Produce some verses by Invoking the procedure once for each verse.)
OneVerse;
OneVerse;
OneVerse;
OneVerse;
end.

Using procedure modules can contribute to program
development in all of the ways identified in our
introduction. For example, OneVerse captures, in one
place, the structure of a verse. This makes it easy, for
instance, to make different choices for the punctuation of
each line, while maintaining consistency over the entire
song.

OneVerse is also easy to reuse. If we hadnTt used
procedures in this program, it would have been very long,
because each of the occurrences of "OneVerse” would have
been replaced by the details of a particular verse. Getting
those details right (over and over again!) would not have
been easy.

In spite of all their benefits, procedures do have some
drawbacks. One of these is that it is not very convenient
to reuse a procedure in several different programs. First,
you must copy the text of the procedure into each program

Sec. 7.3 Using Modules in Program Development 305

that needs it. If you want to change the procedure, you
have to find ajl the copies and fix them individually.

Another difficulty is that in many situations the author
of a procedure may not want you to know its internal
details. The details may be a trade secret!

Enter the UCSD Pascal unit construct. It addresses
these difficulties with procedures, and has other benefits,
as well. (The other two p-System languages, BASIC and
FORTRAN-77, have comparable, though somewhat less
powerful, constructs. We describe the UCSD Pascal
version, here.)

A unit is a group of procedures and data structures,
usually related to a common task area. A program or
another unit can access these facilities by naming the unit
in a simple uses statement. The using program or unit is
called the client.

A unit has two parts. The first is the interface part,
which describes the procedures and data items that are
"public" (that is, made available to clients). The second
part of a unit is the implementation part, which contains
the detailed definitions of the public procedures, plus any
other "private" procedures or data that are needed in the
unit.

A unit can be compiled by itself, with no knowledge of
potential clients. This means that when you work on a
program containing many units, you can save a significant
amount of program development time by recompiling only
the modified units when the program is changed. Units
that are not changed, do not generally have to be
recompiled. The exception is that when the interface
section of a unit is changed, all clients of that unit must
be recompiled.

In its compiled (p-code) form, a unit still includes
textual source definitions for the interface section. These
definitions become available to clients. Note, however, that
no details on the implementation section are available to
clients.

306 Modules: A Theme of the p-System Chap. 7

A sample unit, called SimpleGraphics, is shown below.
It provides three public services: putting a dot at a
particular (x,y) coordinate on the graphics screen of a host
computer; choosing the color for subsequent dots; and
clearing the entire graphics screen. Here is the unit:

Unit SimpleGraphics;
Interface

Procedure PutDot (xCoordlnate, yCoordlnate: Integer);
Procedure ChangeColor (NewColorj Integer);
Procedure ClearScreen;

CurrentColor: Integer;

PutDot; begin ...
ChangeColor; begin CurrentColor NewColor end;

Procedure Clearscreen; begin ... end;

end.

Only one of the procedure definitions is shown
(ChangeColor). The variable CurrentColor stores the color
selected most recently by the client. CurrentColor is
updated whenever ChangeColor is called.

A program or another unit that needs the facilities
offered by SimpleGraphics need only include the statement
"USES SIMPLEGRAPHICS".

SimpleGraphics is a. good example of the way in which
units can contribute to useful isolation in programs. As a
user of SimpleGraphics, you need only know the functional
effects of the three interface procedures, so the
implementation can be changed to cater to different kinds
of graphic devices (screens, plotters, or a graphics printer,
for example) without impacting your programs.

The full-fledged graphics package called Turtlegraphics
(which is described in the next chapter) is another example
of the isolation benefits of units. It has been implemented
on several different computers that have different display
hardware details, but Turtlegraphics1 interface to client
programs is preserved in each of these adaptations.

Sec. 7.3 Using Modules in Program Development 307

Units donTt just "divide and isolate." They address all
four of the variations on "divide and conquer" that we
listed in the introduction. Here are brief comments on the
others:

o "Divide and understand." Since you only need to
understand the services a unit provides, and not how it
implements those services, it is easier to deal with a
large program that is composed of many units than it
would be if you had to wade through all that
implementation detail.

o "Divide and reuse." A carefully designed unit can
often be used in many different programs, not just in
the original context that justified its creation. As you
work in the p-System environment, you can accumulate
a growing arsenal of program building blocks that can
be applied to new projects. Reusability of units can
result in enormous savings of your program development
energy.

o "Divide and manage." Splitting a large program into
units can make it easier for a group of programmers to
work cooperatively on the program. Once the group
decides on interface definitions for the units of the
program, individual programmers can proceed on their
own with the writing and testing of the implementation
sections.

In this section, we have stressed the aspects of units
that affect program development. In the next section we
turn our emphasis to the execution of programs; we first
examine the handling of units during program execution.

7.4 USING MODULES DURING PROGRAM EXECUTION

The independence that characterizes units during program
development also applies during program execution. The
compiled p-code for the units that a program needs can be
spread across several code files. When you execute a
program, the operating system searches in these files for all
the needed units.

308 Modules: A Theme of the p-System Chap. 7

In most other operating systems, the modules of a
program must be stitched together by a link editor utility
and stored in a single file before the program can be
executed. In the p-System, this "stitching" step is
unnecessary. This results in two important benefits.

The first benefit occurs when you make a change to a
unit of a program and want to re-execute it to test the
impact of the change. Because the p-System doesnTt
require a link editing step, you can immediately re-execute
the modified program after recompiling the unit or units
that you changed. The result: fast progress in the program
development process.

The second benefit is that a collection of related
programs can share a single copy of a unit. This sharing
can produce dramatic savings in disk storage space, which
is often a scarce resource when large application programs
are used on small personal computers.

For very large programs with many units, the dynamic
"stitching" that takes place when a p-System program is
executed can take some time. This is not ideal when your
only interest is in routine execution of a previously
developed program. The most recent versions of the
p-System include a way (called the Quickstart utility) to do
most of the stitching once, when a program is readied for
production use. Sharing of units among related programs
can still occur under this scheme.

While the p-code of a program is being executed, it
must be in main memory. Large programs frequently
require more space than is available in main memory, so the
p-System allows p-code to be broken into segments. Each
segment only needs to be in main memory when p-code
within it is being executed; otherwise, the segment can
wait on disk until it is called upon.

These segment modules in the p-System allow you to
run very large programs. If you want to develop such a
program, all you need to do is designate the segment
boundaries in your source program and recompile it. The
compiler produces a code file that contains the segments

Sec. 7.4 Using Modules During Program Execution 309

you indicated. The details of marking segments vary with
the language. In UCSD Pascal, for instance, the main
program and every unit are independent segments by
default. You can divide any of these modules into more
than one segment by declaring segment procedures.

The strategies for deciding how a large program should
be segmented are beyond the scope of this book. We can,
however, mention one excellent candidate for segment
treatment: the parts of a program that are used only when
the program is starting or completing execution. When
these "initialization" or "termination" parts of a program
are independent segments, they are out of the way when
not being used. Therefore, the main part of the program
has more space for its work.

When a segment is in memory, it is stored in a code
pool, along with other segments that have been used
recently. When the amount of available main memory is
64,000 bytes or less, the code pool is maintained between
two dynamically changing data areas called the "stack" and
the "heap." This arrangement is shown in Figure 7.4(a).
These data areas are used for variables that you declare in
your program or for other storage it needs. The p-System
operating system also uses some of this data space.

310 Modules: A Theme of the p-System Chap. 7

DATA area with
INTERNAL CODE POOL

(A)

DATA AREA EXTERNAL CODE POOL

(B)

Figure 7.4

As the need for data space varies, the code pool can
expand, contract, or shift to accommodate these changes.

As we mentioned above, a segment that is being
actively executed must be in main memory. In addition,
when one segment turns over control to another segment,
both must be resident. Usually there is much more space
available within the code pool than is required to meet
these minimums. In this case, the p-System retains in the
code pool as many of the most recently used segments as
possible.

When more than 64,000 bytes of main memory are
available, another arrangement for code and data storage is
possible. In this extended memory configuration, shown in
Figure 7.4(b), the code pool is stored outside the data area.
This eliminates competition between code and data for
memory space, and allows more room for both.

Sec. 7.4 Using Modules During Program Execution 311

What are the implications of these code pool approaches
to managing code segments? They are primarily of the
,!divide and manage” variety.

First, a program that runs on a computer with a small
memory (say 64,000 bytes) can also run, without change,
when the available main memory is doubled. When more
memory is available, the program will probably run faster,
because the segments needed by the program are frequently
already in the code pool when required. This adjustment
for different memory sizes is managed automatically by the
p-System, without special programmer planning.

Second, and perhaps more important, this sophisticated
handling of code segments allows much larger programs to
be run in the p-System than would otherwise be possible on
a given size of memory. No other microcomputer operating
system that we know of provides as much assistance for
running programs that are larger than the available main
memory.

P-SYSTEM TOOLS AND
PROGRAM BUILDING BLOCKS

The UCSD p-System was created to provide an excellent
software environment for the development and execution of
applications programs. The portability and modularity of
this environment, as discussed in the previous chapter, make
the p-System powerful and flexible toward this end. That
chapter gave you some insight into the conceptual structure
of the p-System. Here, we are more concerned with its
components. These components fall into two general
categories: tools and program building blocks.

A software tool is like a carpenterTs tool; it allows you
to build something—better and more easily—than you could
without it. The Editor is an example of such a tool. With
it you can create textual end products such as letters or
books. A compiler is another tool. It allows you to create
executable programs.

A program building block is a prefabricated module that
you can use as an integral part of your programs. The
p-System offers several general-purpose program building
blocks that may greatly assist you in writing applications

312

Tools and Program Building Blocks 313

programs. They perform functions in such areas as screen
control and file management.

We have divided this chapter into three sections:

o Editing and Printing Tools

o Program Development Tools

o Applications Building Blocks

8.1 EDITING AND PRINTING TOOLS

The need for text editing is wide-spread and has many
facets. You may want to write letters, memos,
manuscripts, computer programs, poems, books, or other
sorts of material. Within such text there may be
paragraphs, columns, double-spaced lines, tables, or even
special "pictures" made of ordinary characters placed all
over the screen. You may want to save your text on disk
so that it can be printed. Later you might want to change
what you have created.

Once you have prepared your text, you may want to
print it. Perhaps you would like it to appear on paper
exactly as it does on the screen. Or, you might want to
do some more elaborate things. For example, you may want
to do page breaks at arbitrary places, use special form
lengths, add running heads or page numbers, and so forth.
Perhaps you will want to go beyond this and include
proportional spacing, right margin justification, bold face
printing, and so forth.

There are tools available with the p-System to perform
all of these tasks. The first job, editing, is done with one
of the p-System Ts three editors. These are the Screen-
oriented Editor, the advanced editor (EDVANCE), and the
line-oriented editor (YALOE).

314 Tools and Program Building Blocks Chap. 8

Editing Text

The Screen-oriented Editor provides the standard facilities
for creating, altering, and examining text files. All of the
various kinds of line-oriented and paragraph-oriented
material can be created with it. It is described in Chapter
5 so we wonTt go into any detail about it here.

ED VANCE is similar in many ways to the Screen-
oriented Editor. It includes all of the standard Editors
activities and is used in about the same way. However,
ED VANCE has additional capabilities which provide you with
some more sophisticated editing techniques.

Perhaps the most important feature of ED VANCE is
that it can work with much larger text files than the
standard editor. This is because ED VANCE does not
necessarily read an entire text file into main memory as
the standard editor does. Part of the file being edited can
remain on disk while the portion you are working on is in
main memory. The memory buffer may "slide" forward or
backward allowing you to move to any location within the
file.

Another important feature of EDVANCE is that it
allows you to give special "macro" definitions to as many as
eight function keys. If your computer has keys that you
can use for this, you may find this very convenient. You
are able to assign a string of characters to any function
key. Whenever a function key is typed, it reproduces those
characters. If you are using Knsert, for example, pressing
a function key inserts the characters into your workspace.
This might be convenient if you need to insert the same
thing several times. The characters produced by a function
key may also invoke editor activities. You can use this
facility to perform all sorts of repetitive operations.

EDVANCE also has several additional activities. Many
of these help to move the cursor easily. For example, you
can, by pressing a single key, move the cursor from word
to word, to the end of a line, to the top left corner of the
screen, and so forth.

315 Sec. 8.1 Editing and Printing Tools

YALOE (Yet Another Line-oriented Editor) is designed
for computers that have a printer console device rather
than a screen. It is not nearly as sophisticated as the
other two editors, but it is essential if you want to edit
text on such a computer.

All of the editors store your text on disk in the form
of text files. There are a variety of ways that these files
may be printed as we describe next.

Printing Files

The simplest way to print a text file is to use Transfer (as
described in Chapter 6). When you Transfer a file to the
printer, it is printed exactly as it appears on the screen
when you edit it. In most situations, this is not the best
way to produce a final copy of your text because no
special form lengths or page breaks are taken into
consideration. However, when you want to quickly and
easily print something, Transfer is a good mechanism.
(Files containing compiled or assembled listings can be
printed quite well using Transfer since they have their own
pagination.)

The Print utility, provided with the p-System, is a very
useful tool for producing many sorts of final copy output.
It allows you to control page breaks, form length, headings
(which can include the date, page number, and text file
name), and more. You can even connect several text files
together so that they are printed consecutively (and without
a page break between them, if you want).

Print is especially good for items that need a
professional appearance but don’t require the same level of
sophistication as large documents and books. Print works
very well with letters, memos, small contracts, and so
forth.

At the upper end of the printing spectrum are text
formatters. Text formatters allow much more control over
the printing process then the other methods we have
mentioned. The printed page that you are now reading

316 Tools and Program Building Blocks Chap. 8

was, in fact, taken from the output of the Sprinter (tm)
text formatter on a letter quality printer.

With text formatters you can underline text or cause it
to appear in bold face on many printers. Several printers
are able to do proportional spacing and many text
formatters are able to handle this. Proportional spacing
means that thinner letters, like fTi,Tt take up less horizontal
space than wider ones, like T!W.M This causes the output to
look as though it were typeset. If proportional spacing is
not used, the output looks similar to what most typewriters
produce.

Text formatters are also able to do right (as well as
left) margin justification. Paragraphs that are right-
justified line up exactly with the right-hand margin. This,
of course, is how most books are printed.

There are many other things that text formatters can
do. Pages can be numbered. Special headings and footings
can be used. Some text formatters are able to
automatically generate an index and table of contents.
Sprinter even has an associated spelling checker which can
help you to eliminate spelling errors in your text.

In order to use a text formatter you need to place
special directives in your text files. These directives may
indicate that you want to turn bold face on, indent the
next line, do a page break if the next three lines don't fit
on the current page, and so forth. The exact directives
that are used depend upon the particular formatter.

When you have mastered the use of a good text
formatter (along with the p-System's editing and file
managing facilities), you are in a good position to do very
powerful word processing!

Several text formatters are available to run with the
UCSD p-System. See the UCSD p-System Applications
Catalog or the USUS Vendor Catalog (described in
Chapter 9) for further information.

Sec. 8.1 Editing and Printing Tools 317

There is another p-System tool that falls into the
printing category: the Print Spooler. The Print Spooler is
a facility that allows you to print text files at the same
time that you are using the p-System for other activities.
You can, for example, print a file while you are using the
Screen-oriented Editor or the Filer.

It is possible to print a document using the Print
Spooler with the level of sophistication that the Print
utility offers. This is done by running the text through the
print utility first, and sending the output to a disk file
(instead of directly to the printer). Later, the Print
Spooler can send that file (or several such files) to the
printer.

To use the Print Spooler, you need to execute
SPOOLER.CODE. This utility allows you to place the
names of the text files to be printed in a first-in-first-out
queue (called SYSTEM.SPOOLER). The utility also allows
you to suspend, restart, or quit the printing at any point.

The printing process is performed by the operating
system. If there are text file names in SYSTEM.SPOOLER,
those files are printed in the order that they were placed
there.

For many p-System activities, such as editing with the
Screen-oriented Editor, the printing process goes on at a
very reasonable rate and p-System response is normal. (At
this writing, however, editing with ED VANCE should not be
done in conjunction with print spooling.)

8.2 PROGRAM DEVELOPMENT

The p-System provides a wide array of tools to assist you
in developing programs. This development process includes
editing, compiling, debugging, and optimizing.

The editing phase involves using one of the p-System!s
editors to produce the program text. The compilers
translate the program text into code which can be executed
by the computer. The problem of debugging comes in when
a program doesnTt do what you intended. Optimization

318 Tools and Program Building Blocks Chap. 8

involves making correct programs run better (i.e., more
quickly, consuming less memory space, and so forth). The
next three sections discuss compiling, debugging, and
optimizing programs with the p-System.

Compiling Programs

The p-System currently offers three compilers: UCSD
Pascal, BASIC, and FORTRAN-77. Each compiler translates
program text into p-code which can be executed within the
p-System environment.

The UCSD Pascal language (the most popular with the
p-System) is a somewhat extended version of standard
Pascal. It is modularly structured for clarity and has many
powerful features. These include programmer-defined
variable types, powerful string and array operations, random
access to files, 36 decimal digit arithmetic, 32 and 64 bit
real arithmetic, separate compilation, and more.

The FORTRAN-77 language is an ANSI (American
National Standards Institute) subset of FORTRAN-77.
Known for its scientific and arithmetic capabilities, the
p-SystemTs FORTRAN-77 language includes the If-Then-Else
construct, a built-in character type, and all FORTRAN
numeric intrinsic functions.

The BASIC available with the p-System is a compiled
(rather then interpreted) language with an expanded syntax.
It includes the If-Then-Else construct, optional line numbers,
and virtual disk arrays.

These compilers can create programs or program
modules. The Library utility can combine two or more
compiled modules together. As we pointed out in Chapter
7, compiled modules, called units, can reside in separate
code files known as libraries. When the host program is
executed, the necessary units are found in the libraries.
This provides a useful way of sharing the separately
compiled modules among several programs.

Sec. 8.2 Program Development 319

The Library utility offers another approach. With it
you can place the units directly into a host programs code
file. Although this uses up more disk space if two or more
program code files on a disk contain the same unit, it is
convenient in many circumstances. For example, if all of
the code for a particular program is in one file, that
program can be easily moved from disk to disk, or from
computer to computer. If, on the other hand, some of a
programs code resides in libraries, you need to be certain
that the correct libraries are always around when you move
the program to another environment. Beyond this, the
library utility is useful for placing several units into one
file which can then be designated as a library.

Another p-System tool that you can use to create
executable code is an assembler. Assembly language
programming, while more tedious than higher-level
programming, may be attractive to you in certain situations.
The assembled machine code is directly executed by your
computer's microprocessor. This means it is faster
(although usually more bulky) than the p-code which the
compilers produce. Also, low-level machine-specific
programming can be done in assembly language. This is not
possible from the higher-level languages. The p-System
currently offers assemblers for all of these processors:
8080, Z80, LSI-11 / PDP-11, 6502, 6809, 9900,
8086/8088/8087, and 68000.

Assembly language routines can be called from Pascal,
BASIC, or FORTRAN. The Linker (introduced in Chapter
4) is used to bind the assembled routines into the host
(which may be a compiled module or another assembled
module).

So, the compilers and assemblers, along with the
Library utility and the Linker, allow you to create and
combine executable programs and program modules.

Debugging Programs

To help you determine what might be going wrong with a
program, the p-System provides several tools.

320 Tools and Program Building Blocks Chap. 8

The Debugger is a very useful tool for interactively
finding errors in programs written in UCSD Pascal,
FORTRAN, or BASIC. In order to use the Debugger
effectively, however, you need to have a good
understanding of the internal details of the p-System.

Interactive debugging means that while your program is
running, you can "interact" with it. You can stop it, look
at what values are being assigned to variables, step through
the code very slowly, and so forth. These kinds of things
are often helpful in determining what might be going wrong
with a program that you are developing.

With Pascal, the debugger can be used symbolically.
This means that variables can be accessed by name (rather
than by a numerical offset as they otherwise are). And
break points can be specified by procedure name and line
number (rather than by procedure number and p-code
offset).

It is often essential to have a compiled listing of the
code being debugged. This helps you keep track of where
you are when you use the Debugger. A compiled listing
also shows p-code offsets, procedure numbers, and other
useful information that you need to successfully take
advantage of the Debugger’s capabilities.

Sometimes it is useful to have detailed information
about the internal contents of a code file. However, to
ordinary humans, the raw content of a code file is
practically incomprehensible. Fortunately, the Decode
utility can be used to "decode" this content so that it is
quite a bit easier to understand. Probably, you will only
want to view a code file at this level of detail if you are
debugging a very complex piece of code and are very
knowledgeable about the internal details of the p-System.

One thing the Decoder can show you is the executable
p-code within a file. If you look directly at p-code with
the Patch utility (which is described next), it appears to be
a very strange collection of hexadecimal (base 16) digits.
The Decoder displays the p-code in a more meaningful way
called mnemonic form. In this form you can see the name

Sec, 8,2 Program Development 321

of each individual p-code. The following two columns show
the same piece of code in both formats:

Mnemonic Form Hexadecimal Form

LDCB 50 8032
SRO 1 A501
CXG 3 1 940301
SLDO 1 30
LDC1 400 819001
EQUI B0
FJP 4 D4F6
CXG 4 2 940402
RPU 0 9600

At first glance, mnemonic form may seem
difficult to comprehend as plain hexadecimal digits.
Admittedly, it is not a trivial task to understand p-code in
either format. However, when you know what each p-code
operator does, mnemonic form is certainly easier to
understand. (See Chapter 9 for further reading about the
p-code operators.)

The Debugger has a simple decoder built into it for
your convenience. It can display p-code in mnemonic form.
But the Decoder utility, besides giving you a more
informative listing, can print the mnemonic output so that
you can easily reference it while you are debugging.

There is more to a code file than just the p-code
itself. Sometimes there is an interface section which
contains text. Also, since code files may be divided up
into one or more code segments, the code segment names,
sizes, and so forth, are stored in the code file. Sometimes
a code file requires additional code from another file in
order to run. In this case, very specific information about
that separately compiled (or assembled) code is stored in
the code file. All of this information may be of value to
you and the Decoder can display it in an easily readable
format.

322 Tools and Program Building Blocks Chap. 8

The Patch utility offers another view of the internal
structure of files. Although Patch can be used for
purposes other than program development (for example,
recovering lost files) it is often as useful here as the
Debugger or Decoder. For example, if your program
creates some sort of data file, and you suspect that
something is incorrect within that file, Patch can be used
to view its internal details.

Patch reads a block from the file and displays it on
the console. This display can either be in hexadecimal
notation (base 16, 0 through F), or in printable characters.
You can move the cursor around this display and alter any
values if you want. And, you can write the (presumably
altered) block back out to disk. This sort of "patch"
accounts for the utility’s name.

Optimizing Programs

The p-System offers several tools and facilities to assist
you in making programs efficient with respect to both
execution speed and memory space requirements.

The modular design of the p-System is an important
factor in memory space management. As discussed in the
previous chapter, you can divide programs into segments.
Large programs, which might not otherwise fit into a small
computer’s main memory, can be run if they are segmented.
Also, the unit feature can be used for effectively managing
disk space, since sharable code doesn’t have to be
duplicated.

The time/space tradeoffs between p-code and machine-
level code can also be optimized. P-code (the compilers’
output) is generally more compact than machine code.
However, it is also slower.

A common rule of thumb is that 20% of the code is
executed 80% of the time. In many programs, it is the
case that some small portion of a program is significantly
more time-critical then the rest. It makes sense, therefore,
to translate that portion to machine-level code sacrificing

See. 8.2 Program Development 323

some memory space in favor of noticeable execution speed
improvements.

There are two ways that you can do this with the
p-System. One is to write the time critical code by hand in
assembly language. The other, much easier approach, is to
use the Native Code Generator.

The code generator is a very powerful tool that
translates portions of the p-code within a code file into
machine-level code, more commonly called native code. It
is easy to experiment with the code generator (translating
different routines into native code and so forth) to
determine the most optimal ways to use it on a particular
application.

The code generator’s output always contains a hybrid
mixture of p-code and native code. This means that the
resulting code file can only be executed within the
p-System environment. (The assemblers can be used to
create code that runs outside of the p-System environment,
if that is desired.)

The Quickstart utility can be useful for making
programs start more quickly. If a program is divided into a
fairly large number of units, it may take several seconds,
or tens of seconds, for it to start running. This is because
of the associate time requirements. During associate time,
tables of information concerning the programs units are set
up. This information is needed so that the various pieces
of code can be located when they are needed during the
program’s execution. With the Quickstart utility, these
tables can be created for a program and stored in the code
file so that association time is no longer a significant
factor. As long as the libraries that contain the program’s
units remain unaltered and on the same disks, the tables
are valid.

Another utility, called Real Convert, is useful for
increasing the execution speed of certain programs which
use floating point constants. Real Convert is helpful when
a program contains code segments which are frequently
swapped into and out of memory and which also have a

324 Tools and Program Building Blocks Chap. 8

large number of real constants. Normally, every time a
code segment is read into memory, any real constants it
contains must be converted from the machine-portable
canonical form to the machine-specific native form. If
there is a large number of real constants, this conversion
process can slow down the programTs execution speed. Real
Convert changes the real constants in the code file to the
native form for the processor in use when the utility is
run. The resulting code file can only be run on that
processor. For example, if you execute Real Convert while
using a four word 8086 system, the real constants in the
programs code file are converted from canonical form to
four word 8086 form. This means that the code file will
now only run on a four word 8086 system. (It should run
more quickly, however.)

Another useful tool for helping to optimize (or even
debug) Pascal programs is the cross referencer, Xref. Xref
takes as input the text for a Pascal program. It produces
a listing which contains several tables that may be an aid
in program analysis. These tables give you information
about which procedures call which other procedures, where
variables are referenced, and so forth.

8.3 APPLICATION BUILDING BLOCKS

Although you could write your applications programs
entirely from scratch, it is likely that you would be
duplicating existing and available code in some areas.
Furthermore, as the p-System continues to evolve, it is
possible that you would have to upgrade some of that code
whereas the standard applications building blocks are
maintained by the p-System developers. So, it may be
greatly to your advantage to use some of the applications
building blocks that are covered here.

These building blocks are available in the form of pre¬
compiled units. They provide such services as controlling
the screen in a portable fashion, managing disk files from
programs, manipulating color graphics images, and more.

Sec. 8.3 Application Building Blocks 325

A few of these units reside within the operating
system. The others must be placed in a library or your
program code file (using the Library utility).

Operating System Units

The operating system, SYSTEM.PASCAL, has been discussed
throughout this book. It is, of course, the core of the
UCSD p-System and it contains a lot of code to perform its
various tasks. Some of this code can be useful to
applications programs and so it has been made generally
accessible. In particular, there are portions of the
operating system which facilitate screen handling, allow you
to chain programs together, and help you to intercept
certain kinds of p-System error messages and change them
to fit your particular application.

One important thing that most applications programs
must do is display information on the screen and retrieve
user responses. When you write applications using the
UCSD p-System, you will probably want to take this a step
further and insure that your user interface is portable (as
well as clean). This issue of portability could be a problem
since there are so many types of computer terminals and
displays, most of which have their own way of doing things.

Fortunately, the operating systemTs screen handling unit,
Screenops, provides some very useful routines which are
independent of the particular brand of hardware that an
end user might have. Screenops includes routines which
blank out a single line or clear the entire screen. There
are routines to move the cursor in any direction or to
place it at a specific location on the screen. If you intend
to use the kind of menus and prompts that the p-System
uses, there are routines that display them and help you to
read the user!s input (including the special control keys
which vary from computer to computer). There is also
some miscellaneous information which you can get at using
Screenops (for example, the current date).

Another thing that you may want to do, as an
applications developer, is create your own user-friendly

326 Tools and Program Building Blocks Chap. 8

environment. If you do this, it is convenient to be able to
start up one or more programs from a central menu and
later return. (SYSTEM.MENU, which is briefly introduced in
Chapter 4, can be very useful in this context.) The
Commandio unit within the operating system has some
facilities that allow you to chain programs together.
Chaining means that when one program finishes executing,
another is started automatically (without the user having to
enter something at the keyboard). For example, from a
simple menu program, you can chain to other programs
which the user selects. The routine that does this is called
CHAIN.

Another routine within Commandio, called REDIRECT,
allows you to redirect input and output in the same manner
as execution option strings (see Section 4.17, page 180).
This may come in handy in various situations. For example,
you may want to save the user from needless troubles by
automating a series of tasks. This might be done by
redirecting your programs input (or the p-SystemTs input) to
a script file.

When you are creating your own user-friendly
environment like this, there is another operating system unit
which may be of some value. It is called Errorhandler. It
allows your application programs to intercept execution
errors and errors that can occur when a necessary disk has
been removed from a drive. For example, if the user
accidentally removes a needed disk from its drive, normally
a message like this is displayed:

Need segment SEGNAME: Put volume VOLNAME In unit U then type <space>

But, your particular application could arrange for a
more specific message to be used, for instance:

Please place the DB Manager disk back In Its drive. Then type space.

In order to compile a program which uses any of these
units, you need to have available the code files Screenops,
Commandio, or Errorhandler. This is because those files

Sec. 8.3 Application Building Blocks 327

have the interface sections which are needed by the
compiler. When you run such a program, however, only
SYSTEM.PASCAL needs to be available since the code for
these units resides there (without the interface sections).

File Management Units

You have seen how the Filer handles disk files in this book.
You may want to do the same sort of file managing
directly from your applications programs. The Filer is an
ordinary program, and your programs can do the same things
that it does. However, it is not a trivial programming task
to implement the Filer activities. So, there are four units
that have been made available and are known as the File
Management Units.

One of these units, called DIR.INFO, helps your
programs to access disk directories. It allows you to list
directories, change file names, change the date of a file or
volume, remove a file, and several other tasks.

Another unit, FILE.INFO, can be used to gain
information about particular files. With it you can see if a
file is open or not, find its length, determine what volume
it is on, and so forth.

The third unit, SYS.INFO, allows you to access
information which is stored globally in the p-System. For
example, you can determine what the name of the work file
is, find out the name of the system disk, change the
internal p-System date, and more.

Finally, a unit called WILD provides some wild card
facilities that can be used with the other File Management
Units. These wild cards are similar to those used by the
Filer. For example, using the equal wild card like this:

=.TEXT

you can use DIR.INFO to get a list of all text files on a
certain volume.

328 Tools and Program Building Blocks Chap. 8

Xenofile

Xenofile is a facility which allows users of the UCSD
p-System to access CP/M disk files. It consists of three
units (one for Pascal, BASIC, and FORTRAN). Each unit
provides several CP/M functions to p-System programs.

For example, your p-System programs can open, close,
delete, create, and rename CP/M files. They can read and
write records to and from such files. They can handle the
CP/M file control blocks. They can write-protect CP/M
disks. And, there are several other such functions which
you can use from your p-System programs.

Xenofile also includes a utility program which acts as a
simple CP/M "filer." With it you can display a CP/M
directory and transfer text files between a p-System disk
and a CP/M disk.

KSAM

KSAM is a file management system which allows programs
to store and retrieve data in a keyed or sequential fashion.
It is especially useful for developing such applications as
data base managers, reservation systems, inventory control
programs, and so forth.

For example, using KSAM, you can create a file of
names, addresses, and zip codes. This file can be
maintained so that all of the entries are in alphabetical
order according to last name. You can then access
individual entries sequentially (going from the names that
start with "A" to the ones that start with "Z"). Or you
can access any entry randomly by using a specific key (in
this case, a particular last name).

Furthermore, you could sort this same example file in
zip code order. You might do both if you want to insert
and delete random entries according to last name, and then
print out all entries on mailing labels according to zip
code.

Sec. 8.3 Application Building Blocks 329

KSAM is designed to access files efficiently so that it
is practical for you to maintain large files if necessary.

The main part of KSAM consists of two units. The
main unit performs various functions with respect to a
primary key. The second unit allows you to have as many
alternate keys as you need. There are two additional units
which allow KSAM to interface with BASIC or FORTRAN.
These last two units are not necessary if you are using
Pascal.

Turtlegraphics

Many computers are able to display graphic images on their
screens. This means that all sorts of figures, charts and
graphs can be created. The Turtlegraphics unit can help
your programs to display these sorts of things if your
computer hardware supports graphics.

Turtlegraphics is so named because it uses the concept
of a turtle which moves across your screen leaving a trail
as it goes. You can tell the turtle to move a given
distance in a given direction. Or, you can tell it to move
to some specific location. In either case, as it moves, it
leaves its trail if you want it to. The trail may be in
various colors if your hardware allows. The trail can
appear to be over, under, or on the same level as other
portions of the figure being created. Although the trail is
always a straight line, circles and other curves can be
"drawn" by programmatically moving the turtle very short
distances and slightly changing the direction each time.

Once a figure has been created, the turtle can rest.
The resulting work of art may be stored in a .FOTO file on
disk. It can be loaded and displayed again at any time.
Several figures may be displayed on the screen at the same
time. They can be placed in various locations and can
appear to be over, under, or on the same level as each
other when they intersect.

On some computers, Turtlegraphics is already configured
and ready to use. In other cases, you must install the

330 Tools and Program Building Blocks Chap. 8

Turtlegraphics package in order to use it. This involves
writing some assembly language routines that are specific to
your hardware. These routines perform the basic tasks of
setting a point to a particular color, drawing a line
segment, and so forth. Turtlegraphics builds upon them to
provide higher level services to your p-System programs.

FURTHER READING

This book is not a complete description of the p-System
since that would have required thousands of pages of text.
In this short chapter we indicate some of the other sources
of p-System information that are available. Two important
sources are SofTech Microsystems (SMS), and the UCSD
p-System UserTs Society (USUS). SMS can be contacted at:

SofTech Microsystems, Inc.
16885 West Bernardo Drive
San Diego, California 92127
(619) 451-1230

USUS may be contacted at:

USUS
P.O. Box 1148
La Jolla, California 92038

331

332 Further Reading Chap. 9

9.1 p-SYSTEM REFERENCE MANUALS

SofTech Microsystems publishes a series of reference
manuals which serve as the formal descriptions of the
p-System. Many p-System suppliers simply provide these
manuals with the p-System software. Some suppliers,
however, choose to rework these manuals into their own
formats.

The IV.l documents that are currently distributed by
SMS are described next (in the first subsection). There are
many of the older IV.O and IV.l manuals already in
circulation; these are described in the second subsection.

Sec, 9,1 p-System Reference Manuals

Current Version IV.l Documents

333

Operating System Reference Manual

This document describes the aspects of the p-System
that are of interest to all p-System users (non¬
programmers as well as programmers). It covers the
following topics:

Operating System
Menus and Prompts
Command menu items
Execution Option Strings
Redirection

File Management
File names and types
Devices and volumes
Recovering files
Workfiles
Subsidiary volumes
User-defined serial devices
Filer menu items

Screen-oriented Editor
Utilities

Print
Print Spooler
Quickstart
Real Convert
Setup
Copydupdir
Markdupdir
Recover
Library
Disksize

334 Further Reading Chap. 9

Program Development Reference Manual

This document covers tools and general principles of
p-System program development. The various
programming languages are not described here. The
following topics are covered:

Pascal Compiler
Using the compiler
Compiler options
Selective USES

User Interfacing From Programs
SYSTEM.MENU and SYSTEM.STARTUP
Program chaining and redirection
Screen handling unit
Error handling unit

File Management units
Turtlegraphics
Native Code Generator
Debugger
Utilities

Decode
Patch
Xref

Assemblers Reference Manual

This book addresses the p-System assemblers, the
Linker, and the COMPRESS utility. These specific
topics are covered:

Assembler Directives
Macros
Linking and Relocation
The Compress Utility
Using the Assembler
Assembler Listings
Processor Specific Information

Sec. 9.1 p-System Reference Manuals

8086 Assembler Reference Manual

335

This book is equivalent to the assembler manual, above,
except it concentrates on the 8086/8088/8087
processors. It contains additional information
concerning the 8086 family opcodes, registers, and
flags.

Internal Architecture Reference Manual

This book describes various aspects of the internal
workings of the p-System. The following topics are
addressed:

P-machine Architecture
Stack / Heap
Code Pool
Code Segments
Task Environments
P-code Operators

Low-Level I/O
Runtime Support Package (RSP)
Basic I/O Subsystem (BIOS)

Operating System Internal Details
Program Execution Internal Details

336 Further Reading Chap. 9

Adaptable System Installation Manual

Detailed directions for installing the Adaptable System
are presented in this book. The Adaptable System
packaging of the p-System allows you to adapt the
p-System to the input/output conventions of your
computer. Sophisticated assembly language programming
is required. (It is usually preferable to acquire a
p-System that has already been adapted to your
computer. See the Implementations Catalog described
in Section 9.2.) The following topics are addressed:

Bootstrapping
Terminal Handling
Simplified BIOS (SBIOS)
Utilities

Booter
Diskchange
Screentest

FORTRAN-77 Reference Manual

This book is the reference for the the p-System
implementation of FORTRAN-77.

BASIC Reference Manual

This book is the reference for the p-System
implementation of BASIC.

Sec. 9.1 p-System Reference Manuals 337

Optional Products Reference Manual

This book is actually a collection of several
independent manuals. These manuals describe tools and
program building blocks that are not necessarily part of
the standard p-System. Currently, the following optional
products are covered:

EDVANCE
KSAM
SofTeach
XenoFile

338 Further Reading Chap. 9

Original Version IV.0/IV.1 Organization

Users' Manual

This is the principal reference for the the p-System,
version IV.O. It covers the topics that are addressed in
the current "Operating System Reference Manual",
"Program Development Reference Manual", and the
"Assembler Reference Manual".

Installation Guide

This book is equivalent to the current "Installation
Reference Manual."

Internal Architecture Guide

The book is equivalent to the current "Internal
Architecture Reference Manual."

FORTRAN-77 Reference Manual

This book is the reference for the p-System
implementation of FORTRAN-77.

BASIC Reference Manual

This book is the reference for the p-System
implementation of BASIC.

Users' Manual Supplement

This book describes the additional facilities available
with the IV.l release of the p-System. It augments, but
does not replace, the IV.O manuals.

Sec. 9.2 p-System Catalogs

9.2 p-SYSTEM CATALOGS

339

The first two catalogs described in this section are
published by SofTech Microsystems on a periodic schedule
(approximately every six months). The third catalog is part
of the UCSD p-System UserTs Society (USUS) periodic
newsletter.

UCSD p-System Applications Catalog

This book describes hundreds of software packages that
are compatible with the p-System and offered by
independent software distributors. For each program ,
the distributor, price range, and brief functional
description are provided. Names and addresses of
distributors are also included.

UCSD p-System Implementations Catalog

If you don’t have the p-System for your computer, this
book may tell you how to get it. It lists distributors
of adaptations of the p-System for various
manufacturers1 computers (personal and otherwise).

USUS Vendor Catalog

This catalog is part of the USUS newletter and lists
vendors of p-System applications and other
p-System-related products.

340 Further Reading Chap. 9

9.3 BOOKS ON PASCAL AND UCSD PASCAL

UCSD Pascal Handbook, Randy Clark and Stephen Koehler
(Prentice Hall, New York, 1982)

Indispensable if youTre programming in UCSD Pascal.
Includes a full reference description of the UCSD
Pascal language, along with a series of tested example
programs that illustrate many useful UCSD Pascal
programming techniques.

A Practical Introduction to Pascal, I.R. Wilson and A.M.
Addyman (Springer-Verlag, New York, 1979)

Concise and readable treatment of the entire Pascal
language. Not ideal for the novice programmer. Does
not address UCSD Pascal extensions.

Pascal: an Introduction to Methodical Programming,
William Findlay and David Watt (Computer Science
Press, Potomac, Maryland, 1978)

One of the better tutorial books on Pascal and
structured programming.

Doing Business with Pascal, R. Hergert and D. Hergert
(Sybex, Berkeley, 1983)

Describes the use of UCSD Pascal for business
application programs. Stresses the importance of the
UCSD Pascal unit construct and its modularity benefits.
Case studies and ready-to-run programs illustrate
advanced UCSD Pascal programming techniques.

ERROR MESSAGES

FOR MAJOR ACTIVITIES

This appendix summarizes the error messages produced by
the activities of the Operating System, the Filer, and the
Editor. Each error is discussed, and potential diagnoses and
recovery actions are listed.

In many cases, only the meaningful part of the error
message is listed here. Often, when displayed on the
screen, this is preceded by the word "ERROR:" or perhaps
followed by a phrase like one of these:

Type <spacebar> to continue, <esc> to abort.
Do you wish to continue (Y/N) ?

When you understand the nature of the particular error,
the remaining part of the message should be clear.

341

342 Error Messages for Major Activities Appen. A

A.l OPERATING SYSTEM ERRORS

A(ssemble

Cannot find SYSTEM.ASSMBLER: That file is not present
on any on-line volume. If it is present, the file is
corrupted.

xxxx.OP CODES not on any volume: The ITxxxxTT is a
processor name (such as Z80 or 8086). This opcodes file is
necessary in order to run the assembler. The file was not
found on any on-line volume.

Can’t find VOLsWORKFILE.TEXT: The text file that you
indicated is not present. Or, if you didn’t indicate a text
file, at some point you had a workfile which is no longer
on-line. You may have R(emoved the workfile without
doing a N(ew. Or, the disk containing the workfile may not
be in the proper drive.

Can’t open VOL:FILE.CODE: The code file that you
indicated can’t be opened because the volume is not on¬
line, or the file name that you gave is incorrectly
specified, or there is no room on the disk. If you are
using a workfile, there is no room for SYSTEM.WRK.CODE
on the system disk.

Syntax errors: The assembler, itself, displays errors if your
text does not conform to the correct syntax of the
assembly language. These errors are not covered in this
book.

Sec. A.l Operating System Errors: C(ompile 343

C(ompile

Cannot find SYSTEM.COMPILER: That file is not present
on any on-line volume. If it is present, the file is
corrupted.

Canft find VOL:FILE.TEXT: The text file that you
indicated is not present. Or, if you didn’t indicate a text
file, at some point you had a workfile which is no longer
on-line. You may have R(emoved the workfile without
doing a N(ew. Or, the disk containing the workfile may not
be in the proper drive.

Can’t open VOLsFILE.CODE: The code file that you
indicated canTt be opened because the volume is not on¬
line, or the file name that you gave is incorrectly
specified, or there is no room on the disk. If you are
using a workfile, there is no room for SYSTEM.WRK.CODE
on the system disk.

Syntax errors: The compilers display errors if your text
does not conform to the correct syntax of the language
being compiled. These errors are covered in Appendix C.

D(ebug

No debugger in system: The Debugger units have not been
placed in SYSTEM.PASCAL. (This must be done by using
the Library utility.)

344 Error Messages for Major Activities Appen. A

E(dit

Cannot find SYSTEM .EDITORS That file is not present on
any on-line volume. If it is present, the file is corrupted.

Workfile lost: At some point you had a workfile which is
no longer available. You may have R(emoved the workfile
without doing a N(ew. (You can simply enter the Filer and
select N(ew if this is the case.) Or, the disk containing
the workfile may not be in the proper drive.

Buffer overflow: The file you are trying to load is too
large to fit into your workspace in main memory. You can
edit it, but only the first part of the file is available.
You should not save the workspace under its old name; if
you do, you lose the portion of the file that did not fit
into memory.

Error reading file (or) Disk error: The file can’t be read
into the workspace. There may be a bad block or the disk
may have been removed in the middle of the reading
process.

Unable to allocate buffer: If your computer has a very
limited amount of main memory, this error indicates that
you can’t use the Screen-oriented Editor because there is
not enough room to hold a workspace.

Editor activity errors: There are errors that can occur
while you use the Editor. These are covered later in this
appendix.

Screen problems: If the Editor doesn’t display material on
the screen properly, or if the cursor movement keys don’t
work, the file SYSTEM.MISCINFO has not been properly
configured using the SETUP utility, or the GOTOXY unit
within the operating system is not correct for your console.
You should run the Screentest utility to verify that screen
handling is functioning properly on your terminal.

Sec* A*1 Operating System Errors: F(ile 345

F(ile

Cannot find SYSTEM.FILER: That file is not present on
any on-line volume. If it is present, the file is corrupted.

Filer activity errors: There are errors that can occur
while you use the Filer. These are covered later in this
appendix.

L(ink

Cannot find SYSTEM.LINKER: That file is not present on
any on-line volume. If it is present, the file is corrupted.

No file FILENAME.CODE: The file that you indicated as
a host file or lib file doesnTt exist on the expected volume.

All segs linked: Your host file does not have any
references to external assembly language routines. Or, if it
does contain such references, those routines have already
been linked into it.

Code open error: The file that you indicated as an output
file canTt be opened. The name may be incorrect (e.g., too
long), the volume that you specified may not be on-line, or
there may not be enough room on the volume for the file.

Code write error: The output file could not be created.
There may not be enough contiguous disk space on the
volume to hold the resulting file. Or, a bad block may
exist where the file was being created.

346 Error Messages for Major Activities Appen. A

M(onitor

No monitor open: When you leave the monitor using
R(esume, this warning says that you have not designated a
disk file to hold your keystrokes and therefore monitoring is
not being done.

Can’t open file: The script file that you indicated with
B(egin canTt be opened because you used an illegal file
name, or the volume you specified is not on-line, or there
is no room on the volume.

File already open: You attempted to use B(egin to open a
new script file, but you had already used B(egin and a file
is already open. You must use E(nd or A(bort on the
current script file before you can use B(egin again.

Can’t close file: You selected E(nd to save your script
file, but that file canTt be closed. You may have removed
the disk that contains the file.

U(ser-restart

U not allowed: You can*t restart the last program for one
of several reasons: you just reinitialized (perhaps after an
execution error); the last program failed to start (e.g.,
because it wasn!t found); the last program was the
C(ompiler or Assembler, which canTt be restarted.

Sec. A.l Operating System Errors? X(ecute 347

XCecute

Illegal file name: The file name you entered is not a valid
name. Check the actual name of the program you want to
invoke, and try again.

No file FILENAME.CODE: The file that you indicated
wasnH located on the indicated disk, or that disk isnft on¬
line. (If you didnTt specify a disk, then this applies to the
prefix disk even though its volume name isnft included in
the message.)

No program in FILENAME.CODE: The file that you
indicated doesn!t contain an executable program. It may be
a unit (which can*t be run by itself). Or, it may not be a
code file at all. If it does contain a program, the file is
probably corrupted.

Redirection error: You made a mistake while using
execution option strings. This may be a mistake in the
syntax of the execution option string, itself. Or, an input
(or output) file that doesn!t exist or can?t be opened may
be the problem.

FILENAME.CODE is not a code file: The file you
indicated is not of the CODE type, and therefore canTt be
executed.

Error reading (or rereading) segment dictionary (or
program code file): The program file you indicated could
not be read successfully. The file may contain a bad
block.

Error reading library code file (or library
LIB.NAME.CODE): A library file referenced by the
program you invoked was not readable.

I/O Error reading library list file FILE.NAME.TEXT:
The file containing the current list of libraries could not be
read. Perhaps you made a mistake in specifying the file

348 Error Messages for Major Activities Appen. A

with the ,!L=n execution option. Try using the Editor or
the Filer to check that the library text file you intend to
use is valid; then use ITL=T1 again to designate it.

Library list file FILENAME is not a text file: Try
designating the library text file again, after confirming with
E(xtended list directory that it is indeed a text file.

Warning: Library LIB.NAME.CODE not found: The named
file occurs in the current library text file, but cannot be
found. Processing continues, since the program being
invoked may not need anything in the missing file.

Unit UNITNAME not found: The named unit is required
for execution of the program you indicated. Unfortunately,
this unit cannot be found by the p-System. Perhaps you
didnTt set up the library text file properly, or perhaps you
made some other error in preparing the program for
execution.

Duplicate unit UNITNAME: There is more than one
instance of the named unit in the program being invoked, or
perhaps there is a clash between the names of a unit in
the program (or a library file) and a unit in the operating
system.

Program must be linked via L(ink: The program being
invoked contains unsatisfied references to assembly language
routines. You must use L(ink before this program can be
executed.

Segment SEGNAME is an obsolete code segment: The
named segment was produced in an earlier and incompatible
version of the p-System, The program that contains it must
be recompiled with the current p-System version.

Too many library code files (or system units)
referenced: The limits on the number of library code files
(or the number of operating system units referenced) have
been exceeded.

Program environment too complicated: The number of
units used by the program and the complexity of their
relationships mean that this program can only be executed
after being processed by the Quickstart utility.

Environment construction error: An unknown error
occurred while the program was being prepared for

Sec. A.l Operating System Errors: X(eeute 349

execution. The cause may be a flaw in the p-SystemTs
program invocation mechanism.

Insufficient memory to construct environment: You may
be able to improve this situation by coalescing or removing
libraries from the library text file list.

Insufficient memory for environment: The program is too
complicated to run in the main memory available.

Insufficient memory to allocate data segment: The data
storage needed for the program or one of its units is too
large. This program cannot be run in the current memory
configuration.

Insufficient memory to load fixed-position segment: The
program contains or references an assembly language
segment that must be loaded throughout execution of the
program. There is not enough room to load it; therefore,
this program cannot be executed in the current memory
configuration.

A.2 EDITOR ERRORS

A(djust

Bell beeps when llescj is typed: You canTt exit A(djust
with [[esc]); you must use ttetxj.

Bell beeps when other keys are typed: You canTt use
any alpha-numeric keys or cursor movement keys except the
ones which are indicated on the A(djust prompt.

350 Error Messages for Major Activities Appen. A

C(opy

Buffer overflow: There is not enough room in your
workspace to hold what you are attempting to copy into it
(either from the copy buffer, or from a file).

File not present: The file from which you wanted to copy
text is not on the indicated disk.

Marker not there: You are attempting to copy text from a
disk file using markers. But, one of the markers that you
indicated doesnft exist in that file.

Improper marker specification: You did not correctly
indicate two markers, separated by a comma, between
square brackets.

Disk error (or) Bad disk transfer: Text in the disk file
canTt be correctly read. There may be a bad block or the
disk may have been removed.

Marker exceeds file bounds: Something is wrong with the
marker in the disk file. It indicates a position that is
outside of that file. The disk file is probably corrupted.

D(elete

Bell beeps when characters are typed: You can only use
the cursor movement keys in D(elete.

There is no room to copy the deletion: The amount of
text that you are trying to delete canTt be placed in the
copy buffer. You may go ahead and delete it, but if you
do, you canTt copy it back into your workspace later.

Sec. A.2 Editor Errors: F(ind 351

F(ind

Invalid delimiter: You did not use a correct delimiter
(which must be a special character such as V1 or tT/n)
before starting to enter your target string.

Pattern not in the file: The sequence of characters that
you entered, or the nTth occurrence of it (if you used a
repeat factor) does not exist in your workspace.

No old pattern: You attempted to use the "same" option
by entering TTSIT instead of a delimited sequence of
characters. But, you have not yet used F(ind or R(eplace
since starting the current editing session so there isnTt an
existing pattern.

Knsert

You are about to discard more that 80 characters: You
have inserted more than 80 characters and then pressed
Eescl. This warning informs you that your insertion is going
to be discarded if you go ahead and exit Knsert with |[esc]].
You may, instead, return to Knsert.

No insertion to back over: You have attempted to erase
characters that you did not insert since starting the current
Knsert activity. Either you used Hbsl one time too many,
or you used [[delete lineU on the first line of the insertion.

Please finish up the insertion: There are less than 1000
characters of available space in your workspace and every
time you start an insertion this is displayed. You should
consider breaking up the file if there is very much material

352 Error Messages for Major Activities Appen. A

that you still need to add. S(et Environment informs you
exactly how much space is left.

No room to insert: There is no remaining space (or almost
none) within your workspace and the Editor will not allow
any more text to be added. You should never push the
Editor this far!

Buffer Overflow!!!!: You added more text to your
workspace than it can hold. You have now lost something
off the end of your workspace.

J(ump

Not there: The marker that you indicated is not present
within the workspace.

K(ol

Bell beeps when [[esc]] is typed: You canTt exit K(olumn
with [esc]]; you must use detx]].

Bell beeps when other keys are typed: You canTt use
any alpha-numeric keys or cursor movement keys except the
ones which are indicated on the K(olumn prompt.

Sec. A.2 Editor Errors: M(argin 353

M(argin

Inappropriate environment: M(argin canTt be used because
A(uto indent is not false or F(illing is not true within S(et
Environment.

Q(uit

ERROR writing out the file: You used Q(uit U(pdate or
Q(uit W(rite but the workspace canTt be saved on disk for
one of several reasons: there is not enough room on the
disk; the volume where the file is to be saved isnft on-line;
you indicated a syntactically incorrect file name. (This is
all described in detail in Chapter 5 in the section "Leaving
the Editor.")

R(eplace

Pattern not in the file: The target doesnTt exist in your
workspace, or the nTth occurrence of that target doesn't
exist when repeat factors are used. If the target does
exist, it may be that the direction indicator is not set as
you thought.

No old pattern: You attempted to use the "same" option
with either the target or the substitution string (by typing

354 Error Messages for Major Activities Apperu A

fTS" instead of delimited strings). But, you have not used
R(eplace since starting the current editing session and there
isn’t any ’’same” pattern.

Buffer full. Aborting Replaces There are less than 200
characters remaining in your workspace and R(eplace wonTt
allow you to make any more substitutions (since they may
add to the size of the workspace).

S(et Environment

T or F: If you do not respond with a ”T” or ”F” to a
true/false option you receive this prompt. You should then
enter either ”T” or ”F.”

#: If you don’t respond to a numeric S(et Environment
option with a number, you receive this prompt. You should
then enter a numeric value.

S(et M(arker

Marker ovflw. Which one to replace?: You have already
set 20 markers in your workspace. You must throw one
away if you want to set another.

Sec. A.2 Editor Errors: X(change 355

X(change

Buffer is filling up... watch it!: The workspace is nearly
full (less than 128 characters remaining). Be very careful
since X(change can add characters to your workspace. You
should probably break up the workspace into two or more
files before you continue editing.

Z(ap

You are about to zap more than 80 chars: This warns
you that more than 80 characters are about to be deleted
if you follow through with the Z(ap activity. (It is easy to
accidentally type fTZ" and that is why the warning is given.
If you do accidentally Z(ap something, you can usually copy
it back using C(opy B(uffer.)

There is no room to copy the deletion: The amount of
text that you are trying to Z(ap can’t be placed in the
copy buffer. You may go ahead and Z(ap that text, but if
you do, you can’t use CXopy B(uffer to get it back into
your workspace later.

Invalid ZAP: You can’t do Z(ap twice in a row or this
error occurs. Also, you may not have done a F(ind,
R(eplace, or I(nsert in the current editing session.

356 Error Messages for Major Activities Appen. A

A.3 FILER ERRORS

In this section, the Filer error conditions are listed and
explained. In the errors that apply to files or volumes, you
will often see <source> or <dest>, for example:

List what vol ? PRINTER: gretl
PRINTER: Unblkd vol* Flle/(blkd vol) expected <source>

Transfer what file ? #4*. tretII
To where ? #100: (EretlT
Transfer 320 blocks ? (Y/N) Y
Put In #100:
Type <space> to continue
#100:[3203 - No such vol on-line <dest>

TT<Source>" refers to the file or volume that the
activity uses as its input. (In the first example, the volume
to be listed, the source, was incorrect.) TT<Dest>t! refers to
the file or volume where the activity sends its output. (In
the second example, the destination for the Transfer
operation was incorrect.)

There are many errors which can occur in almost any
Filer activity. Rather than cover them repeatedly under
each activity, we summarize them here.

Bad file name: The file name that you used was not
syntactically correct.

Bad form (Wild <to> Non-Wild) card: With a Filer activity
that requires an input and output file, you attempted to use
a wild card on only one side.

Bad I/O operation: You attempted to do an I/O
transaction which can!t be done. For example, it is not
possible to Transfer something from the printer.

Bad unit number: You used an incorrect device number.

FILENAME..too long <file name 15-char. max>: The file
name you entered contains more than the 15 character
maximum that is allowed.

Sec, A.3 Filer Errors 357

File not found: The file that you indicated does not exist.
Perhaps you gave the wrong volume name. Or, you may
have forgotten to use the file name suffix (such as .TEXT
or .CODE) in a situation where it is required.

Ill file/vol name: You used a file or volume name which is
syntactically incorrect. This message can occur in several
error messages.

No directory on vol: The storage volume that you are
trying to access does not contain a p-System directory.
Perhaps it has not been Z(eroed.

No room on vol: This error indicates that you are
attempting to add a file to a storage volume, but there is
not enough contiguous disk space to hold it.

No such vol on-line: The volume that you indicated is not
present. Perhaps you removed the disk from its drive, or
used the wrong name. If you receive this error while using
the Z(ero activity, you may need to format the disk before
you Z(ero it.

Parity (CRC) error: This indicates that an I/O error
occurred during a disk read or write or a communication
volume transaction. The disk may have bad blocks or you
may have removed it in the middle of the operation. The
communication volume may not be functioning correctly.

Unblkd vol, File/(blkd vol) expected: This sort of error
can occur in various combinations and permutations.
"Unblkd vol" refers to unblocked volume (or communication
volume). "Blkd vol" refers to blocked volume (or storage
volume). The message indicates that you incorrectly
specified a communication volume when a file or a storage
volume was required. If, for example, you attempt to L(ist
PRINTER: you receive this message (since communication
volumes donTt have directories).

VOLNAME..too long <vol name 7-char. max>: The
volume name you entered contains more than the 7
character maximum that is allowed.

Vol went off-line: A volume which was on-line when the
activity began is no longer present. Perhaps you removed a
disk from its drive.

358 Error Messages for Major Activities Appen. A

Wildcard not allowed: You attempted to use a wild card
in a situation where the Filer does not allow it. For
example, you can’t designate more than one workfile, so
wild cards are not allowed with G(et.

B(ad blocks

Invalid #: When responding to the "Scan for how many
blocks" prompt, you entered an incorrect number (such as
0).

C(hange

Ill change (Vol <to> file) name: You attempted to change
a volume name to a file name (or a file name to a volume
name). You may have forgotten to include the colon after
a volume name.

Vol already on-line: You attempted to change the name of
a volume to the name of another volume which is currently
on-line. The p-System doesn’t allow this because confusion
can result when two volumes with the same name are on¬
line at the same time. (You should always try to avoid
this situation!)

Sec. A.3 Filer Errors: Flip swap/lock 359

Flip swap/lock

Not enough memory: Your computer does not have enough
main memory to contain the entire Filer. You are unable
to use this activity.

G(et

No file loaded: You incorrectly indicated the file you want
to designate as the workfile. You probably specified a file
that doesn't exist.

K(runch

Invalid #: You indicated an inappropriate block number
(such as a negative number) in response to the
"Starting at block #TT prompt.

Please re-boot: The K(runch activity moved
SYSTEM.PASCAL and/or SYSTEM.FILER on the system disk.
The p-System canTt gracefully recover from this situation
and requests that you bootstrap again.

360 Error Messages for Major Activities Appen. A

M(ake

Nested subsidiary volumes are not permitted: You
attempted to create a .SVOL file within a subsidiary
volume. Subsidiary volumes canTt be created within other
subsidiary volumes.

0(n/off-line

FILE —> NOT mounted: The file that you indicated can't
be mounted. Perhaps it is not a correct .SVOL file. Or,
if it is correct, you may have already mounted as many
subsidiary volumes as you can on your configuration. (If
this is the case, you can dismount one of the subsidiary
volumes that is already mounted. Or, you may be able to
use Setup to increase the maximum number of subsidiary
volumes that are allowed to be mounted at one time.)

S(ave

No workfile to save: You donTt presently have any
workfile and so S(ave doesnTt do anything.

Workfile is saved: You already have a permanent workfile
and no temporary version of it exists. Therefore, S(ave
does nothing.

Sec. A.3 Filer Errors: S(ave 361

Text file lost or Code file lost: Your text or code
workfile can’t be saved because it eanTt be found. You
may have R(emoved SYSTEM.WRK.TEXT or
SYSTEM.WRK.CODE without doing a N(ew or S(aving them
first. Alternatively, the system disk may be out of its
drive.

Transfer

Output file full: There is not enough contiguous disk space
to complete the Transfer. This error is similar to the
"No room on vol" message which can also be issued by
Transfer.

X(amine

No room on vol: If this error occurs within X(amine, it
indicates that there is not enough disk space (or there are
already too many files) to create the BAD.xxxxx.BAD file.

Z(ero

Invalid #: You indicated an incorrect number of blocks for
the size of the new volume.

EXECUTION ERRORS

This appendix describes errors that can be detected and
reported by the p-System while a program is running. Two
categories of errors are addressed: 1) errors that can occur
in any p-System program, and 2) errors that can only occur
in a program written in FORTRAN. A section of the
appendix is devoted to each of these categories.

Most of these errors are reported in the manner
described in Sections 1.7 and 3.7, with the error message at
the bottom of your screen. For the p-System errors, a
textual error message, such as "Program interrupted by
user," is provided if possible. If the system disk is not
available, or if there is insufficient main memory available
when the error occurs, an error number replaces the textual
message. Both the number and the message are given for
the errors listed in this appendix.

Your direct response to any of these errors will
probably be to press [[space]] (once you have absorbed the
error message, and possibly written down the details for
later reference). The program that was executing will then
be cancelled, and the p-System will reinitialize itself (to

362

Execution Errors 363

correct any damage that might have been done as a result
of the error).

Some of these errors may be detected by an application
program and handled by it (possibly with your assistance).
For instance, if an application program asks you to specify
a disk file for it to process, it may determine that the file
you specify does not exist. After informing you of the
problem, the program usually gives you a chance to specify
a file that does exist. This approach is used by the major
p-System components. Many of the error messages listed in
Appendix A result from the detection of an error described
in this appendix.

For each of the p-System errors, we provide some
diagnosis and recovery advice. Your response to an error
will probably depend on whether it occurs in a program
that you are developing yourself, or in an application
program that you have acquired. In the latter case, you
should make a note of the error coordinates that occur in
the execution error message, and contact the supplier of
the application for assistance. In some cases, however,
there may be simple things you can do differently when you
next use the program to avoid an execution error. If so,
we have tried to anticipate and describe them. Since there
are so many different circumstances in which execution
errors can occur, our diagnosis and recovery advice in this
appendix is not comprehensive. We believe it will be useful
to you, nevertheless.

B.l p-SYSTEM EXECUTION ERRORS

The first subsection describes the general execution errors
that can occur. One of these (#10) is used whenever a
program has a problem that involves input/output (I/O)
activities (writing information onto a disk, for instance).
Since there are so many kinds of I/O errors, these are
treated separately in a second subsection.

364 Execution Errors Appen. B

General Execution Errors

#0—System errors The operating system has detected an
internal inconsistency. There is no effective recovery
action you can take. You must simply reboot the p-System.

#1—Value range error: A program attempted to use a
number that is either larger or smaller than it should be.
You may have made a request of the program that it isnTt
prepared to handle.

#2—No proc in seg table: A program attempted to call a
procedure that does not exist. One possibility is that the
program references external routines, but the necessary link
editing step was not done to install those routines.

#3—Exit from uncalled proc: An invalid attempt was
made to use the EXIT procedure in UCSD Pascal. An EXIT
call names a procedure which is to be "exited.” During
this EXIT attempt, the named procedure could not be found,
so the EXIT was impossible to perform. This is probably an
error in the program.

#4—Stack overflows The p-System has run out of main
memory. Possibly this program is fundamentally too large
to run in your configuration. Alternatively, you may have
asked it to perform a task that requires more memory than
you have. In this latter case, you may still be able to use
this program, as long as you are more modest in your
demands of it. You might consider changing the
configuration of your p-System to make more memory
available. For instance, if you have the Print Spooler
installed, memory is occupied even if you arenTt using the
Spooler,

#5—Integer overflow: An arithmetic calculation has been
attempted that would have resulted in a number larger than
the p-System can handle. This is probably an error in the
program.

#6—Divide by zero: An attempt has been made to divide
by zero, which is an invalid operation. This is probably an
error in the program.

#7—NIL pointer reference: A program has made an
invalid reference to main memory. Specifically, it may
have attempted to use a Pascal pointer variable that

Sec, B.l p-System Execution Errors 365

contained a value of NIL, This is illegal, and is probably a
program error,

#8—Program interrupted by user: You pressed the
[[break! key (perhaps by accident). If you didn’t intend to
press IbreakJ, make sure you know what the Ibreakl key is
on your computer, and try to avoid this mistake in the
future. If you don’t know what IbreakH is (even after
looking at the front inside cover of this book) check you
p-System documentation or use the Setup utility.

#9—System I/O error: An I/O error has been detected
during a critical operation of the operating system. No
recovery from this error is possible. You should simply
reboot the p-System.

#10—I/O error: This error is usually coupled with a
further description indicating what type of I/O error
occurred. Check the ”p-System I/O Errors” subsection
(which is next).

#11—Unimplemented instruction: An attempt has been
made to execute an invalid p-code instruction in a program.
The most likely cause is that the program code file is
corrupted in some way. Try getting another copy of the
program. Another possibility is that a program got out of
control and inadvertently corrupted a program segment
stored in main memory.

#12—Floating point error: During a computation involving
real (or ’’floating point”) numbers, an error has been
detected. This is probably an error in the program.

#13—String overflow: A program attempted to use an
overly long character string. This is probably an error in
the program. Possibly you provided a response to a data
entry prompt that had more characters than the program
was intended to handle.

#14—Programmed HALT: The program has executed the
UCSD Pascal procedure, HALT. This usually means the
program has detected an error from which it cannot
recover.

366 Execution Errors Appen. B

#15—Illegal heap operation: The heap is a dynamically
managed storage area available to UCSD Pascal programs*
Some illegal operation was attempted involving the heap.
This is probably an error in the program*

#16—Breakpoint: This execution error is intended to be
intercepted by the p-System Debugger. It is used as a
signal to the Debugger to stop execution of the program
and give you a chance to decide what to do next. If you
see this error, there is probably an internal p-System
problem.

#17—Incompatible real number size: The program that is
running is configured for a size of real numbers that does
not match the size for which the p-System has been
configured. Section 1.18 provides some background on this
topic. Agreement about the real number size must exist
among the operating system, the p-machine emulator, and
the program being executed.

#18—Set too large: An operation has been attempted
involving the Pascal data type, "Set." The set was too
large to be correctly handled. This is probably a program
error.

#19—Segment too large: A program attempted to load a
program segment that was too large to be handled on this
p-System implementation. Check your computer-specific
documentation to find out what this limit is.

p-System I/O Errors

The items listed in this subsection are also known as I/O
Results. Whenever a p-System I/O operation is done, a
report on its success or failure is made to the requesting
program. This I/O Result is in the form of a number. If
the number is zero, the operation was successful. If the
number is not zero, some difficulty occurred, and the value
of the number indicates the problem. If the program
receives a non-zero I/O Result, it may simply pass on the
number to you in a simple error message. If this happens,
you need to look in this subsection to find out the details
of the error.

Sec. B.l p-System Execution Errors 367

Programs may also choose not to handle the checking
of the I/O Result themselves, leaving that responsibility to
the p-System, instead. In this case, when a non-zero I/O
Result is detected, a standard p-System execution error is
reported (with the message on the bottom line of the
screen giving the error coordinate, and so on).

#1—Parity error (CRC): A read or write operation has
resulted in invalid data. "Parity" and "CRC" refer to two
ways in which such an error can be detected. Both involve
adding extra information to the data which can be used to
check the correctness of data, itself. The most likely
cause of this error is a damaged area (also known as a
"bad block") on a storage medium (such as a diskette). It
is also possible that a diskette was not properly inserted
when the I/O operation was attempted. For instance, you
may have forgotten to close a drive door, or removed a
diskette prematurely.

This error can also be reported in connection with I/O
operations on communication devices (such as the printer).

#2—Illegal unit #: An I/O operation has been attempted
using an illegal device number. (Recall that "unit" is
sometimes used as a synonym for "device.") For instance,
you may have referred to storage device #9: when you only
have storage devices #4: and #5: on your computer.

#3—Illegal I/O request: An I/O operation has been
attempted that is inappropriate for the device involved.
For instance, there may have been an attempt to read data
from a printer (which is ordinarily an output-only device).

#4—Data-com timeout: "Data-com" refers to "data com¬
munications." This seldom seen error can indicate that
some difficulty has occurred in a communication channel
(through the REMIN: and REMOUT: devices, for instance)
between your computer and another computer or peripheral
device.

#5—Volume went off-line: A storage or communication
volume that had been on-line is no longer on-line. Perhaps
you inadvertently turned off a device that was still in use,
or removed a diskette prematurely.

368 Execution Errors Appen. B

#6—File lost in dir: A file that used to be in the
directory of a storage volume is no longer there. That file
has been in use, and the system now needs to confirm its
status.

#7—Bad file name: The specification of a file is invalid.
It may be too long, for instance. If you have just entered
a file specification in response to a data entry prompt, that
specification may be wrong. See the inside back cover of
this book for a summary of the requirements on file
specifications.

#8—No room on vol: There is insufficient room on the
designated volume for the operation requested. There may
have been an attempt to create a file on the volume. If
so, there is insufficient space on the volume to hold the
file, or the directory capacity of 77 files is exhausted.

#9—No such volume on-line: The designated volume
cannot be located by the p-System. If it is a storage
volume, you may have removed a diskette prematurely. If
it is a communication volume, such as a printer, the device
may not be turned on, or not ready for operation.

#10—No such file on volume: A file specification has
designated a file on a particular volume. However, no such
file exists on that volume. You may have forgotten that
you need to explicitly provide a Volume ID when you
designate a file thatTs not on the prefix, or default,
volume.

#11—Dup dir entry: Somehow there are two files with the
same name in the directory of a volume. This may have
happened because a program was interrupted, and didnTt
complete execution normally. Try rebooting the p-System
with the affected volume on-line; that may clean out the
extra directory entry.

*12“~File already open: A program has attempted to open
a file variable that is already open. This is a program
error.

FUe not open: A program has attempted to access a
file variable that is not open. This is a program error.

#14 Bad input format: You probably just responded
incorrectly to a data entry prompt requesting that you

Sec. B.l p-System Execution Errors 369

enter a number. For instance, you may have entered
letters rather than digits. Or, you may have entered a real
number (such as ”4.356"), when the program expected an
integer number (with no fractional part).

#15—Ring buffer overflows On some p-Systems this error
is reported when you have tried to type too many
characters before the p-System has a chance to process
them. On other p-System’s, such an attempt to enter too
many "type ahead" characters is signaled by the sounding of
the bell. If you continue typing after the bell, characters
are discarded.

#16—Write-protect: An attempt has been made to write
data on a volume that is write-protected. Diskettes
distributed by p-System suppliers or application suppliers are
often write-protected so you canTt destroy them by mistake.
You may have write-protected a volume, yourself, and
forgotten about it.

#17—Illegal block: A program has attempted to access a
block number that doesn’t exist on the storage device
involved.

#18—Illegal buffer: The main memory address involved in
a program’s low-level ("device I/O") operation is
inappropriate.

B.2 FORTRAN EXECUTION ERRORS

600: Format missing final ’)’
601: Sign not expected in input
602: Sign not followed by digit in input
603: Digit expected in input
604: Missing N or Z after B in format
605: Unexpected character in format
606: Zero repetition factor in format not allowed
607: Integer expected for w field in format
608: Positive integer required for w field in format
609: ’.’ expected in format
610: Integer expected for d field in format
611: Integer expected for e field in format
612: Positive integer required for e field in format
613: Positive integer required for w field in A format

370 Execution Errors Appen. B

614: Hollerith field in format must not appear
for reading

615: Hollerith field in format requires repetition factor
616: X field in format requires repetition factor
617: P field in format requires repetition factor
618: Integer appears before T+T or f-f in format
619: Integer expected after T+T or T-T in format
620: P format expected after signed repetition factor

in format
621: Maximum nesting level for formats exceeded
622: !)T has repetition factor in format
623: Integer followed by V illegal in format
624: V is illegal format control character
625: Character constant must not appear in format

for reading
626: Character constant in format must not be repeated
627: T/T in format must not be repeated
628: !Y in format must not be repeated
629: BN or BZ format control must not be repeated
630: Attempt to perform I/O on unknown unit number
631: Formatted I/O attempted on file opened as

unformatted
632: Format fails to begin with V
633: I format expected for integer read
634: F or E format expected for real read
635: Two V characters in formatted real read
636: Digit expected in formatted real read
637: L format expected for logical read
639: T or F expected in logical read
640: A format expected for character read
641: I format expected for integer write
642: w field in F format not greater than d field + 1
643: Scale factor out of range of d field in E format
644: E or F format expected for real write
645: L format expected for logical write
646: A format expected for character write
647: Attempt to do unformatted I/O to a unit opened

as formatted
648: Unable to write blocked output, possibly no room on

device for file
649: Unable to read blocked input
650: Error in formatted textfile, no <cr> in last 512 bytes
651: Integer overflow on input

Sec. B.2 FORTRAN Execution Errors 371

652: Too many bytes read out of direct access unit record
653: Incorrect number of bytes read from a direct access

unit record
654: Attempt to open direct access unit on unblocked

device
655: Attempt to do external I/O on a unit beyond end of

file record
656: Attempt to position a unit for direct access on a

nonpositive record number
657: Attempt to do direct access to a unit

opened as sequential
658: Attempt to position direct access unit on

unblocked device
659: Attempt to position direct access unit beyond end of

file for reading
660: Attempt to backspace unit connected to

unblocked device
661: Attempt to backspace sequential, unformatted unit
662: Argument to ASIN or ACOS out of bounds

(ABS(X) .GT. 1.0)
663: Argument to SIN or COS too large

(ABS(X) .GT. 10E6)
664: Attempt to do unformatted I/O to internal unit
665: Attempt to put more than one record into

internal unit
666: Attempt to write more characters to internal unit

than its length
667: EOF called on unknown unit

697: Integer variable not currently assigned
a format label

698: End of file encountered on read with no END= option
699: Integer variable not ASSIGNed a label used in

assigned goto
1000+ Compiler debug error messages - should never

appear in correct programs

SYNTAX ERRORS C

This section lists the syntax errors that can be emitted by
the UCSD Pascal and FORTRAN-77 compilers*

C.l UCSD PASCAL SYNTAX ERRORS

Is Error in simple type
2: Identifier expected
3: Unimplemented error
4: T)T expected
5: T:T expected
6: Illegal symbol (terminator expected)
7: Error in parameter list
8: TOFT expected
9: T(T expected
10: Error in type
11: t[T expected
12: T]T expected
13: ’ENDT expected
14: V expected
15: Integer expected

372

Sec, C.l UCSD Pascal Syntax Errors 373

16: '=' expected
17: 'BEGIN* expected
18: Error in declaration part
19: Error in <field-list>
20: V expected
21: T*T expected
22: 'INTERFACE* expected
23: 'IMPLEMENTATION* expected
24: 'UNIT* expected
50: Error in constant
51: ': =' expected
52: 'THEN* expected
53: 'UNTIL* expected
54: 'DO* expected
55: 'TO* or 'DOWNTO* expected in for statement
56: 'IF* expected
57: 'FILE* expected
58: Error in <factor> (bad expression)
59: Error in variable
60: Must be of type 'SEMAPHORE'
61: Must be of type 'PROCESSED'
62: Process not allowed at this nesting level
63: Only main task may start processes
101: Identifier declared twice
102: Low bound exceeds high bound
103: Identifier is not of the appropriate class
104: Undeclared identifier
105: Sign not allowed
106: Number expected
107: Incompatible subrange types
108: File not allowed here
109: Type must not be real
110: <tagfield> type must be scalar or subrange
111: Incompatible with <tagfield> part
112: Index type must not be real
113: Index type must be a scalar or a subrange
114: Base type must not be real
115: Base type must be a scalar or a subrange
116: Error in type of standard procedure parameter
117: Unsatisified forward reference
118: Forward reference type identifier in

variable declaration

2^4 Syntax Errors Appen* C

119: Re-specified params not OK for a forward
declared procedure

120: Function result type must be scalar, subrange
or pointer

121: File value parameter not allowed
122: A forward declared function^ result type canTt

be re-specified
123: Missing result type in function declaration
124: F-format for reals only
125: Error in type of standard procedure parameter
126: Number of parameters does not agree with

declaration
127: Illegal parameter substitution
128: Result type does not agree with declaration
129: Type conflict of operands
130: Expression is not of set type
131: Tests on equality allowed only
132: Strict inclusion not allowed
133: File comparison not allowed
134: Illegal type of operand(s)
135: Type of operand must be Boolean
136: Set element type must be scalar or subrange
137: Set element types must be compatible
138: Type of variable is not array
139: Index type is not compatible with the declaration
140: Type of variable is not record
141: Type of variable must be file or pointer
142: Illegal parameter solution
143: Illegal type of loop control variable
144: Illegal type of expression
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar
149: Index type must be integer
150: Assignment to standard function is not allowed
151: Assignment to formal function is not allowed
152: No such field in this record
153: Type error in read
154: Actual parameter must be a variable
155: Control variable cannot be formal or non-local
156: Multidefined case label
157: Too many cases in case statement

Sec. C.l UCSD Pascal Syntax Errors 375

158: No such variant in this record
159: Real or string tagfields not allowed
160: Previous declaration was not forward
161: Again forward declared
162: Parameter size must be constant
163: Missing variant in declaration
164: Substitution of standard proc/func not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
168: Undefined label
169: Error in base set
170: Value parameter expected
171: Standard file was re-declared
174: Pascal function or procedure expected
175: Semaphore value parameter not allowed
182: Nested UNITs not allowed
183: External declaration not allowed at this nesting level
184: External declaration not allowed in INTERFACE section
185: Segment declaration not allowed in INTERFACE section
186: Labels not allowed in INTERFACE section
187: Attempt to open library unsuccessful
188: UNIT not declared in previous uses declaration
189: fUSEST not allowed at this nesting level
190: UNIT not in library
191: Forward declaration was not segment
192: Forward declaration was segment
193: Not enough room for this operation
194: Flag must be declared at top of program
195: Unit not importable
201: Error in real number - digit expected
202: String constant must not exceed source line
203: Integer constant exceeds range
250: Too many scopes of nested identifiers
251: Too many nested procedures or functions
252: Too many forward references of procedure entries
253: Procedure too long
254: Too many long constants in this procedure
256: Too many external references
257: Too many externals
258: Too many local files
259: Expression too complicated
300: Division by zero

376
Syntax Errors Appen.

301: No case provided for this value
302: Index expression out of bounds
303: Value to be assigned is out of bounds
304: Element expression out of range
398: Implementation restriction
399: Implementation restriction
400: Illegal character in text
401: Unexpected end of input
402: Error in writing code file, not enough room
403: Error in reading include file
404: Error in writing list file, not enough room
405: ’PROGRAM' or ’UNIT’ expected
406: Include file not legal
407: Include file nesting limit exceeded
408: INTERFACE section not contained in one file
409: Unit name reserved for system
410: Disk error

500: Assembler error

C.2 FORTRAN-77 SYNTAX ERRORS

1: Fatal error reading source block
2: Nonnumeric characters in label field
3: Too many continuation lines
4: Fatal end of file encountered
5: Labeled continuation line
6: Missing field on $ compiler directive line
7: Unable to open listing file specified on $ compiler

directive line
8: Unrecognizable $ compiler directive
9: Input source file not valid textfile format
10: Maximum depth of include file nesting exceeded
11: Integer constant overflow
12: Error in real constant
13: Too many digits in constant
14: Identifier too long
15: Character constant extends to end of line
16: Character constant zero length
17: Illegal character in input
18: Integer constant expected
19: Label expected

Sec. C.2 FORTRAN-77 Syntax Errors 377

20: Error in label
21: Type name expected (INTEGER, REAL, LOGICAL, or

CHAR ACTE R[[*n])
22: Integer constant expected
23: Extra characters at end of statement
24: T(f expected
25: Letter IMPLICITSd more than once
26: f)T expected
27: Letter expected
28: Identifier expected
29: Dimension(s) required in DIMENSION statement
30: Array dimensioned more than once
31: Maximum of 3 dimensions in an array
32: Incompatible arguments to EQUIVALENCE
33: Variable appears more than once in a type

specification statement
34: This identifier has already been declared
35: This intrinsic function cannot be passed as

an argument
36: Identifier must be a variable
37: Identifier must be a variable or the current

FUNCTION
38: f/T expected
39: Named COMMON block already saved
40: Variable already appears in a COMMON block
41: Variables in two different COMMON blocks cannot be

equivalenced
42: Number of subscripts in EQUIVALENCE statement

does not agree with variable declaration
43: EQUIVALENCE subscript out of range
44: Two distinct cells EQUIVALENCES to the

same location in a COMMON block
45: EQUIVALENCE statement extends a COMMON block

in the negative direction
46: EQUIVALENCE statement forces a variable to two

distinct locations, not in a COMMON block
47: Statement number expected
48: Mixed CHARACTER and numeric items not allowed

in same COMMON block
49: CHARACTER items cannot be EQUIVALENCES

with non-character items
50: Illegal symbol in expression
51: CanTt use SUBROUTINE name in an expression

378 Syntax Errors Appen. C

52: Type of argument must be INTEGER or REAL
53: Type of argument must be INTEGER, REAL,

or CHARACTER
54: Types of comparisons must be compatible
55: Type of expression must be LOGICAL
56: Too many subscripts
57: Too few subscripts
58: Variable expected
59: expected
60: Size of EQUIVALENCES CHARACTER items

must be the same
61: Illegal assignment - types do not match
62: Can only call SUBROUTINES
63: Dummy parameters cannot appear in COMMON

statements
64: Dummy parameters cannot appear in EQUIVALENCE

statements
65: Assumed-size array declarations can only be used

for dummy arrays
66: Adjustable-size array declarations can only be used

for dummy arrays
67: Assumed-size array dimension specifier must be last

dimension
68: Adjustable bound must be either parameter or in

COMMON prior to appearance
69: Adjustable bound must be simple integer variable
70: Cannot have more than 1 main program
71: The size of a named COMMON must be the same in

ell procedures
72: Dummy arguments cannot appear in DATA statements
73: COMMON variables cannot appear in DATA statements
74: SUBROUTINE names, FUNCTION names, INTRINSIC

names, etc. cannot appear in DATA statements
75: Subscript out of range in DATA statement
76: Repeat count must be >= 1
77: Constant expected
78: Type conflict in DATA statement
79: Number of variables does not match number of

values in DATA statement list
80: Statement cannot have label
81: No such INTRINSIC function
82: Type declaration for INTRINSIC function does

not match actual type of INTRINSIC function

Sec. C.2 FORTRAN-77 Syntax Errors 379

83: Letter expected
84: Type of FUNCTION does not agree with a

previous call
85: This procedure has already appeared in this compilation
86: This procedure has already been defined to exist in

another unit via a $USES command
87: Error in type of argument to an INTRINSIC FUNCTION
88: SUBROUTINE/FUNCTION was previously used as a

FUNCTION/SUBROUTINE
89: Unrecognizable statement
90: Functions cannot be of type CHARACTER
91: Missing END statement
92: A program unit cannot appear in a $SEPARATE

compilation
93: Fewer actual arguments than formal arguments in

FUNCTION/SUBROUTINE call
94: More actual arguments than formal arguments in

FUNCTION/SUBROUTINE call
95: Type of actual argument does not agree with type of

format argument
96: The following procedures were called but not defined:
97: This procedure was already defined by a

$EXT directive
98: Maximum size of type CHARACTER is 255,

minimum is 1
100: Statement out of order
101: Unrecognizable statement
102: Illegal jump into block
103: Label already used for FORMAT
104: Label already defined
105: Jump to format label
106: DO statement forbidden in this context
107: DO label must follow DO statement
108: ENDIF forbidden in this context
109: No matching IF for this ENDIF
110: Improperly nested DO block in IF block
111: ELSEIF forbidden in this context
112: No matching IF for ELSEIF
113: Improperly nested DO or ELSE block
114: V expected
115: !)T expected
116: THEN expected
117: Logical expression expected

380 Syntax Errors Appen. C

118: ELSE statement forbidden in this context
119: No matching IF for ELSE
120: Unconditional GOTO forbidden in this context
121: Assigned GOTO forbidden in this context
122: Block IF statement forbidden in this context
123: Logical IF statement forbidden in this context
124: Arithmetic IF statement forbidden in this context
125: V expected
126: Expression of wrong type
127: RETURN forbidden in this context
128: STOP forbidden in this context
129: END forbidden in this context
131: Label referenced but not defined
132: DO or IF block not terminated
133: FORMAT statement not permitted in this context
134: FORMAT label already referenced
135: FORMAT must be labeled
136: Identifier expected
137: Integer variable expected
138: ’TOT expected
139: Integer expression expected
140: Assigned GOTO but no ASSIGN statements
141: Unrecognizable character constant as option
142: Character constant expected as option
143: Integer expression expected for unit designation
144: STATUS option expected after V in CLOSE statement
145: Character expression as filename in OPEN
146: FILE= option must be present in OPEN statement
147: RECL= option specified twice in OPEN statement
148: Integer expression expected for RECL= option in OPEN

statement
149: Unrecognizable option in OPEN statement
150: Direct access files must specify RECL= in

OPEN statement
151: Adjustable arrays not allowed as I/O list elements
152: End of statement encountered in implied DO,

expressions beginning with !(T not allowed
as I/O list elements

153: Variable required as control for implied DO
154: Expressions not allowed as reading I/O list elements
155: REC= option appears twice in statement
156: REC= expects integer expression
157: END= option only allowed in READ statement

Sec. C.2 FORTRAN-77 Syntax Errors 381

158: END= option appears twice in statement
159: Unrecognizable I/O unit
160: Unrecognizable format in I/O statement
161: Options expected after V in I/O statement
162: Unrecognizable I/O list element
163: Label used as format but not defined in

format statement
164: Integer variable used as assigned format but no

ASSIGN statements
165: Label of an executable statement used as a format
166: Integer variable expected for assigned format
167: Label defined more than once as format
200: Error in reading $USES file
201: Syntax error in $USES file
202: SUBROUTINE/FUNCTION name in $USES file has

already been declared
203: FUNCTIONS cannot return values of type CHARACTER
204: Unable to open $USES file
205: Too many $USES statements
206: No .TEXT info for this unit in $USES file
207: Illegal segment kind in $USES file
208: There is no such unit in this $USES file
209: Missing UNIT name in $USES statement
210: Extra characters at end of $USES directive
211: Intrinsic units cannot be overlayed
212: Syntax error in $EXT directive
213: A SUBROUTINE cannot have a type
214: SUBROUTINE/FUNCTION name in $EXT directive has

already been defined
400: Code file write error
401: Too many entries in JTAB
402: Too many SUBROUTINES/FUNCTIONS in segment
403: Procedure too large (code buffer too small)
404: Insufficient room for scratch file on system disk
405: Read error on scratch file

DIFFERENCES
AMONG P-SYSTEM VERSIONS

This book is intended to be used with Version IV.l of the
UCSD p-System. You can also use it with Version IV.O, but
some of the detailed directions need to be modified, and
some of the screen images you see will be different from
the ones we provide. These differences are summarized in
this appendix.

First, however, we address a topic that you may have
been wondering about: "Were there p-System Versions I, II
and III?"

The short answer is: "Yes." If you want a longer
answer, read the next section; otherwise, skip it and go on
to section 2.

D.l THE p-SYSTEM FAMILY TREE

Version 1.3 was the first p-System version distributed
outside the University of California (starting in August,
1977). This initial version evolved through Versions 1.4 and
then 1.5, as more facilities were added and the p-System

382

Sec. D.l The p-System Family Tree 383

was installed on additional types of microprocessors. In
1979, when SofTech Microsystems took over distribution and
support of the p-System, the principal version being
distributed was Version II.O.

At about the same time, Apple Computer acquired from
the University the rights to distribute the p-System on the
Apple II computer. AppleTs version (called Apple Pascal)
was based on Version II.l of the p-System. Apple has
subsequently evolved that software through several releases.

Also in that 1979 timeframe, Version III.O was
developed for use on Western Digital Ts MicroEngine line of
microprocessors, in which the p-machine is implemented in
hardware instead of being realized by a software p-machine
emulator. Version III of the p-System continues in active
use on MicroEngine hardware.

Version IV.0 was an effort by SofTech Microsystems to
bring together, in one system, the facilities offered in
Versions II.O, II.l, and III.O. Version IV p-Systems are now
offered on a number of popular personal computers.

These various versions of the p-System, while
significantly different in detail, share a common approach in
many areas. For instance, they share the use of menus on
the top line of the screen and single keystroke selections
from those menus. The screen-oriented text editor and file
manager are quite similar also.

There are sufficient differences among these versions,
however, that the detailed keystroke-by-keystroke
procedures in Part 1 of this book only apply to Version IV
systems. In addition, there are substantial differences in
the internal implementations of the various versions, and
many of the portability, modularity, and memory
management discussions in Chapter 7 apply only to Version
IV.

Now that you know roughly how the various major
versions of the p-System relate to one another, the
remaining topic for this appendix is specific comments on
how your use of this book will be affected if you have

384 Differences Among p-System Versions Appen. D

Version IV.O rather than Version IV.l.

D.2 USING THIS BOOK WITH VERSION IV.O

The main focus of this section is on the differences
between these two p-System versions that affect your use
of this book. There are other differences (such as the
availability of various add-on features), but we donTt
emphasize them here.

The differences listed in this section are organized by
the chapter of the main book that they affect. If you are
using Version IV.O, be sure to read the relevant subsection
before you read each chapter.

Notes for Chapter 1

Section 1.5, page 28: When an on-line volumes list is
produced by the Version IV.O V(olumes activity, storage
volume sizes (such as the ”[320]” in the example) are not
shown. This comment applies to all other instances of the
V(olumes activity that are shown later in this chapter.

Section 1.7, page 32 : The error message shown in the
screen image is

TTNo file system.filer.CODE”, instead of

’’Illegal file name system.filer.CODE”.

Section 1.7, page 35: The execution error message is just
below the Filer menu, rather than at the bottom of the
screen. It looks like this:

Program Interrupted by user
Segment PASCAL 10 Proc# 17 Offset# -310
Type <space> to continue

Section 1.10, page 40: The file size for FILER.CODE is
smaller than 37 blocks. Other directory listings later in
the chapter show the smaller size, also.

Sec. D.2 Using This Book with Version IV.O 385

Notes for Chapter 2

Section 2.2, page 62: The Editor menu is different in
Version IV.O:

>EdIt: A(djs+ C<py D(el Fdnd Knsrt J(mp K(ol Q(ult X(ch Z(ap C]

Notice that there is no question mark at the end of the
menu, so there is no menu extension. Nevertheless, there
are Editor activities not listed in the menu. One example
is the M(argin activity. Despite these omissions from the
IV.O menu, the same activities are available in the Version
IV.O editor as in the Version IV. 1 editor.

Section 2.11, page 86: The screen displayed by the
Environment activity has one less item of information in
Version IV.O: the line identifying the file that you are
editing.

Section 2.14, page 95: The Print utility was not provided
with Version IV.O (nor even with early releases of Version
IV.l). The only simple and standard means for printing text
files is therefore the Filers Transfer activity.

Notes for Chapter 3

Section 3.4, page 108: The prompt requesting the choice
of a listing file does not appear at the beginning of a
Pascal compilation. Therefore, throughout this section, the
specific keystroke sequences for invoking the compiler have
an extra [[ret]] that you don’t need to type. The first of
these is on this page, but there are several others

Section 3.7, page 131: The execution error message shown
on the screen image looks like that on the next page, and
appears whereever the cursor happens to be when the
execution error occurs.

Divide by zero
Segment MYFIRST Proc# 1 Offset# 83
Type <space> to continue

Section 3.7, page 136: You don’t have the option of
requesting a compiled listing when you invoke the Pascal

Differences Among p-System Versions Appen. D

beginning of the the workspace:

(*$L PRINTER:*)

This line indicates to the compiler that a compiled listing
should be produced on the printer. If you don’t have a
printer on your computer, substitute CONSOLE: for
PRINTER:. You can also put a disk file name in the $L
directive (if you want the compiled listing stored on the
disk).

Notes for Chapter 4

Section 4.9, page 153: No system file called
SYSTEM.MENU exists in Version IV.O.

Section 4.12, page 157: None of this discussion of
subsidiary volumes applies to Version IV.O, since the entire
facility is missing from that version.

Section 4.15, page 160: Some of the error messages
described in this section appear differently on the screen
than this description indicates. The TtNeed segment”
message would appear on the screen at the current location
of the cursor and would look like this:

Segment MYSEG not found:
Put volume MYDISK In unit 4
Type <space> to continue

The execution error message would similarly appear at the
current location of the cursor, rather than on the last line
of the screen. The IV.O format of the message appears on
the next page.

Divide by zero
Segment MYSEG Proc# 3 Offset# 125
Type <space> to continue

Section 4.17, page 167: The prompt requesting the choice
a listing file does not appear during a Pascal

compilation. If you want a compiled listing to be produced
cmring a compilation, you must insert a "listing directive" in

Sec. D.2 Using This Book with Version IV.O 387

the source text file. See the comments on Chapter 3,
above, or your language manual, for directions on how to
get a compiled listing for your Pascal program.

Section 4,17, page 170: The main menu shown in the
Screen-oriented Editor is different from that shown, but the
activities available for selection are the same in both
Version IV.O and Version IV.l.

Notes for Chapter 5

Section 5.13, page 228: The Environment menu in Version
IV.O is missing the line that starts "Editings" (which
contains the name of the file being edited).

Section 5.13, page 230: The S(et tabs menu in Version
IV.O is more elaborate, and shows several types of tabs
(including L(eft, R(ight, and D(ecimal). We recommend that
you use only L(eft tabs.

Notes for Chapter 6

Section 6.9, page 252: The F(lip swap/lock activity is not
available in Version IV.O. The result is that you may need
to make sure that the diskette containing the
SYSTEM.FILER file is on-line when you select a new
activity in the Filer.

Section 6.9, page 263: The 0(n/0ff-line activity is also
not available in Version IV.O. This activity is only useful
in dealing with subsidiary volumes, which are not available
in Version IV.O, anyway.

Section 6.9, page 275: The on-line volumes list produced
in Version IV*0 does not show the size of storage volumes.
So, for instance, the two occurrences of "[320]" on the
example on-line volumes list would not appear.

Section 6.10, page 283: None of this section on subsidiary
volumes applies to Version IV.O.

388 Differences Among p-System Versions Appen. D

Notes for Chapter 8

The p-System facilities described in this chapter may not
all be available for your Version IV.O system. Many of
them will run in the Version IV.O environment, but were
simply not available when that version was released.
Others depend on specific underlying facilities in the
p-System that are available only in Version IV. 1. If you
donTt have, but would like to have, any of the facilities
described in this chapter, contact your p-System supplier or
SofTech Microsystems.

THE P-SYSTEM

ON THE IBM PERSONAL

COMPUTER

This appendix is a summary of those aspects of the UCSD
p-System which are specific to the IBM Personal Computer
(IBM PC, for short).

The first five sections are coordinated with the hands-
on tutorial of Part 1. Each section corresponds to a
particular point in Part 1 where you need to follow a
computer-specific sequence of operations.

At the time of this writing, the p-System is available
for the IBM PC from two sources. The first source is IBM,
itself (through its dealers and Product Centers). The
second source is Network Consulting, Inc., in Vancouver,
British Columbia, CANADA. The IBM version is described
in this appendix. We assume that your IBM PC hardware is
installed and configured correctly. If you need to, follow
the configuration instructions in IBM*s Guide to
Operations.

Two configurations of the p-System are offered by IBM
for the PC. One is called the Runtime Support package.
This package is an inexpensive way to get the capability to

389

390 The p-System on the IBM PC

run p-System application programs that others have
developed. The Runtime Support package includes the
p-System’s file manager, but not the screen-oriented editor.
Therefore, the parts of this book that deal with editing
text and developing programs (and other more sophisticated
uses of the p-System) do not apply directly to you if you
have this package. You may want to browse in those
sections, anyway, to help decide whether you want to
acquire the full p-System,

If you want to develop your own programs, youTll need
to acquire the full UCSD p-System package, which includes
the Screen-oriented Editor, many program development tools,
and one or two p-System languages. The languages
available are UCSD Pascal and FORTRAN-77. If you get
the full p-System, essentially all of this book is relevant to
you.

At the time of this writing, the p-System available
from IBM is Version IV.O. Since we have written this book
primarily for Version IV.1, there are a few places in the
main part of the book where some details of your use of
Version IV.O will be different from the descriptions
presented. Be sure to check Appendix D, "Differences
Among p-System Versions," for details.

The minimum hardware requirements for running the full
p-System on the IBM PC are:

o at least 64k bytes of memory,

o two disk drives (either single-sided or dual-sided), and

o a display.

For the Runtime Support package, only one disk drive
is required, but it is still desirable to have two drives, and
we usually assume that in this book.

Sec. E.l Starting the p-System the First Time 391

E.l STARTING THE p-SYSTEM THE FIRST TIME

This section is coordinated with the Section 1.3 in Part 1.
It contains two subsections. The first subsection helps you
to fill out the inside front cover of this book. The second
subsection describes how to start the p-System running on
the IBM PC.

Recording Your p-System Details

The first task in this appendix is to fill in tha blanks in
the Ttp-System Details for Your Computer” form. This form
is located on the inside the front cover of the book. Much
of this information is not yet relevant to you, but we ask
you to fill it in, nevertheless. As you progress through the
hands-on exercises of Part 1, you will need this
information.

The information to be written in the blanks is usually
emphasized in the text below. It isn't emphasized when a
description of a key's symbol is given (as opposed to a
word or letter on the key). For each symbol key, we
describe the key and its location on the keyboard; you
should simply draw the special symbol which appears on the
key, in the appropriate blank space on the front cover.

When the Ctrl key and another key should be typed
together to produce a p-System special key, we put nCtrl-fT
in front of the name of the other key. Example: tTCtrl-CTt.

392 The p-System on the IBM PC Appen. E

Personal computer type: IBM Personal computer
Major p-System version: IV.O

320 blocks = size of single-sided diskette volumes
640 blocks = size of dual-sided diskette volumes
#4: storage device: left drive
#5: storage device: right drive
RAM disk volume name: RAMDISK:
Universal Medium accessibility: Native format
Utility to format diskettes: DISKFORMAT.CODE
Need to Z(ero after formatting? Yes

ffretll

EbsJ

[[delete line]]
[[break II
Estop/startl
[[flush B
[[esc]]
Heof B
[tab!

lupj

EdownJ

[[right]]

[[left]!

ffexch-insl

Cexch-dell]

Eetxl

Marked with left bent arrow;
located just left of "Home"
(IBM refers to this key as the "Enter" key.
You may see this term used in IBM-specific
utilities or documentation.)

Marked with left arrow;
located just left of "Num Lock"

C trl-Ibs I
Ctrl-Break
Ctrl-S
Ctrl-F
Esc
Ctrl-C
Marked with left and right arrows;

located just below Esc
Marked with up arrow and "8";

located on the numeric pad
Marked with down arrow and "2";

located on the numeric pad
Marked with right arrow and "6";

located on the numeric pad
Marked with left arrow and "4";

located on the numeric pad
Ins

located on the numeric pad
Del

located on the numeric pad
Ctrl-C

393 Sec, E.l Starting the p-System the First Time

Other notes: (You can summarize the information below in
the space provided.)

Pressing a Shift key (marked with an open upward
pointing arrow) together with the PrtSc key causes the
contents of the screen to be printed (but only with the
Parallel printer adapter).

Special p-System keys on the numeric pad are only
correctly produced when the numeric pad is in "cursor
movement” mode (which is its initial condition). In the
numeric mode, digits are produced (instead of cursor
movement signals) when these keys are pressed. Repeated
pressing of the Num Lock key causes the p-System to go
back and forth between cursor movement mode and numeric
mode.

Sometimes you may press the NumLock key by accident
(when you intend to press flbsll, for instance). If youfre
using the Editor when that happens, your attempts to move
the cursor with the arrow keys will be unsuccessful. Digits
will be produced by your keypresses instead. In a cursor
movement setting, digits are interpreted by the Editor as a
repeat factor. If you type more than four digits without
typing a cursor movement key, the Editor complains:

ERROR: Repea+factor > 10>000 Please press <spacebar> to continue.

To recover, type [[spacell, followed by NumLock, to
return the numeric keypad to cursor movement mode.

Bootstrapping the p-System

At this point we will describe how to start the UCSD
p-System running on the IBM Personal Computer. This
process is often called bootstrapping. If youTre using the
full p-System, locate the diskette labeled ”SYSTEM4:TI.
(Check the diskette holders in the Users' Guide binder.)
If you!re using the Runtime Support package, you have only
one diskette, called "RUNTIME:”, and you should locate it
now.

394 The p-System on the IBM PC Appen. E

Open the drive cover of the left hand drive, insert
either SYSTEM4: or RUNTIME:, and close the drive cover.
The disk should be inserted with the label facing up, under
your thumb.

The remainder of the start up process depends on
whether your PC is already turned on. The main power
switch on the Personal Computer is at the rear of the
system unit on the right hand side.

If your IBM PC is turned off, turn on your printer (if
you have one), and your television display or video monitor
(if you use one); then switch on your computer. There
should be several seconds of silence as your computer
checks itself. (If you have expansion memory installed, this
period could be 20 or 30 seconds.) If the check up finds
no problems, a TTbeep,T sounds; then the left drive light
comes on and you hear whirring as the p-System is read
into the main memory of your computer.

If your IBM PC is already turned on, press and hold
down the two keys marked "Ctrl" and "Alt" on the left side
of your keyboard. While holding those keys down, press the
key marked "Del" on the lower right corner of the
keyboard. Release all three keys together. An immediate
"beep" occurs, the left drive light comes on and you hear
whirring as the p-System is read into main memory.

Eventually the following line (or part of it) appears on
the top of your screen. There should also be an IBM logo
displayed.

Command: E(d!+» R(un» F(Ile» C(omp» L(tnk» X(ecu+e» A(ssem» ? 0V.033

If you can see this entire line on your screen, the start
up operation is complete. If you just did it for the first
time, resume your reading of Chapter 1 at Section 1.3.

If your display is only capable of showing 40 characters
per line (which is usually the case with an ordinary
television), the appearance of your screen is quite different.
The top line looks something like this:

Sec. E.l Starting the p-System the First Time 395

X(ecu+e# Assem, ? OV.033

These are the last forty characters of the 80 character
line. If your screen looks like this, read the section
"Dealing With a 40 Character Screen" later in this
appendix. Then, return to Chapter 1 at Section 1.3.

E.2 MAKING BACK UPS AND CREATING MYVOLs

This section describes operations that you need to do in
Section 1.7 of Part 1.

There are two tasks in this section. The first task is
to make a back up copy of your system diskette and begin
using the back up. The second task is to make an empty
p-System volume called MY VOL:. Each of these tasks
requires a blank diskette, so you need two of them to go
on from here.

Before you can use a new diskette with the Personal
Computer, it must be formatted. (If one of your old disks
goes bad, you may also be able to recover and continue
using it if you format it again.) Formatting a disk
completely erases any information you had previously stored
on it. Don!t apply this process to a used disk unless youTre
positive you don’t need the information it contains.

Disk formatting is done by a utility program called
DISKFORMAT. Invoke that utility now with the X(ecute
activity in the Command menu. The following series of
prompts and responses show how to format the disk in drive
#5. (DISKFORMAT can also be applied to diskettes in
other drives.) After you are prompted to put the disk to
be formatted in the drive, and before you press ttretl to
indicate youTve done that, always check that the disk in
that drive is the one you intend to format.

396 The p-System on the IBM PC Appen. E

Execute what file? DISKFORMAT Uretll
Enter unit number of diskette to be formatted (4..5): J5 jlrQtJ
Insert disk In unit 5 and press <enter>... IretH

DISKFORMAT takes a while to run. When it
successfully finishes, one of the following reports are made
(depending on whether you used a single-sided drive or a
dual-sided drive):

640 block disk formatted

If DISKFORMAT gives you an error message instead of
one of these reports, there is probably something wrong
with the diskette you used. You should try another
diskette.

Remove your newly formatted disk from the drive and
set it aside. Now format your second blank diskette in the
same way. Insert the blank disk in drive #5, invoke
X(ecute, and follow the procedure above. When the
formatting is done, leave the new disk in the drive.

Invoke F(ile and its Transfer activity. To copy your
system disk to the newly formatted disk in drive #5, follow
the sequence of prompts and responses shown below:

Transfer what flie? iAx tretl
To where? #5: Iretl
Transfer 320 blocks? (Y/N) Y_
SYSTEM4: —> #5:

Remove the new system diskette and label it. (If you
write on the label after it!s on the diskette, be sure to use
a felt tip pen.) Your back up task is now complete.

Put the remaining blank disk in drive #5 and invoke the
Z(ero activity. The function of Z(ero is to create an
empty volume (that is, one that has no files) on a disk.

See. E.2 Making Back Ups and Creating MYVOL: 397

The following sequence of prompts and responses creates a
volume called MYVOL: with a size of 100 blocks:

Zero dir of what volume? £5: gjretl
Duplicate dir? .N
t blocks on the disk? 100 gretl
New vol name ? MYVOL: Hret])
MYVOL: correct ? 1
MYVOL: zeroed

You now have a MYVOL: disk. To confirm that, you
can invoke the V(olumes activity. MYVOL: should appear
on the on-line volumes list next to Tt5 #." Remove MYVOL:
from the drive and label it as you did your new system
volume.

The last thing to do is start up the p-System again
using your newly made system disk. Remove the original
system diskette and store it in a safe place. Using your
new system diskette, follow the procedure in "Bootstrapping
the p-SystemTt, above. Be sure to take advantage of the
shorter process that applies when your system power is
already on. When your p-System is started, return to Part
1 at Section 1.9.

E.3 EDITOR SET UP DETAILS

This section is coordinated with Section 2.1 in Part 1.

If you have the full p-System, you already have the
Screen-oriented Editor on your system diskette. You can
proceed through Chapter 2.

If you have the Runtime Support package, you do not
have any text editor. Browse in Chapter 2, if youTd like.

E.4 PASCAL SET UP DETAILS

This section is coordinated with Section 3.4 in Part 1, and
tells you where to find the UCSD Pascal compiler in the
IBM PC p-System release. If you only have the Runtime
Support package, this section is not relevant to you,
because Pascal is only available with the full p-System.

398 The p-System on the IBM PC Appen. E

The disk labeled PASCAL: (which you should find in
the Pascal binder) contains two Pascal compilers. Locate
that disk now, insert it in drive #5: (the right one), and
invoke the Filer!s L(ist directory activity. (Type
F L #5: QretJ from the Command menu.) You should see
the following files:

SYSTEM.COMPILER
PASCAL4.COMPILE

These two compilers differ only in the size of the real
numbers that they support. (See Section 1.18 for a
discussion of the topic of real number sizes.) Assuming
that you followed our directions for starting up the
p-System (Section 1 of this appendix), your system disk
should be SYSTEM4:. That disk is configured for four-word
real numbers. Therefore, you need the four-word compiler
(which is called PASCAL4.COMPILE).

Return now to Section 3.4, and we will show you how
to copy this file onto the MYVOL: volume.

E.5 FORTRAN SET UP DETAILS

This section is coordinated with Section 3.5 in Part 1, and
tens you where to find the FORTRAN-77 compiler and
runtime library in the IBM PC p-System release. If you
have only the Runtime Support p-System, FORTRAN is not
available to you.

The disk labeled FORTRAN: (which you should find in
the FORTRAN binder) contains two FORTRAN compilers
and two runtime library files for FORTRAN. Locate that
disk now, and insert it the drive #5: (the right hand drive).
Invoke the FilerTs L(ist directory activity to view the
directory of that disk. (Type F L #5: [[retj from the
Command menu.) You should see the following files:

FORTRAN 2.CODE
FORTLIB2.CODE
FORTRAN4.CODE
FORTLIB4.CODE

Sec. E.5 FORTRAN Set Up Details 399

There is one compiler/runtime library set supporting
two-word real numbers, and one set supporting four-word
real numbers. Assuming that you followed the original
startup directions in Section 1 of this appendix, your system
disk should be SYSTEM4:. That disk is configured for four-
word real numbers. Therefore, you need the four-word
compiler and the four-word runtime library file. They are
the FORTRAN4.CODE and FORTLIB4.CODE files.

Return now to Section 3.5, and we will show you how
to copy these files onto the MYVOL: volume.

E.6 DEALING WITH A 40-CHARACTER SCREEN

The p-System is most convenient to use when the display
can show a full 80 character line at one time, but forty
character displays can also be productively used, because
the Personal Computer stores the entire 80 character line
in memory, and allows you to choose which of three 40-
character portions you want to see.

The choices are the left half (columns 1-40), the middle
half (columns 21-60) and the right half (columns 41-80).
When the p-System is started, the portion that you see first
is the right half.

The rest of this book assumes an 80 character screen.
Sample displays shown in the book will be full width. You
can use the control sequences described below to see any
part of the screen you wish.

Locate the key labeled "Ctrl” on the left side of the
keyboard, and the left and right arrow keys on the right
side. (The arrow keys also have a digit on them.) Now,
press the "Ctrl" key and hold it while pressing the left

400 The p-System on the IBM PC Appen. E

arrow key. You should see the following characters on the

top line:

SUB*
F(ile» C(omp» L(lnk» X(ecu+e, A(ssem»

This is the middle 40-character portion of the line. Do
the same thing again. Now you see the left half of the
line:

Command: E(di+» R(un» F(!le» C(omp* L(fn

Press the same pair of keys one more time, and you
will be back to the right half of the line, where you
started.

Now move the "window" in the other direction by
holding down "Ctrl" and pressing the right arrow key
several times.

There is one other potential difficulty that you may
have with your display. With some television sets, there is
a tendency to "lose" the first one to three characters on a
line. If this is the case for you, the 40 character chunks
you just saw on your screen have been missing the first
few characters (as compared to the printed versions in this
book). Use the utility program Tvset to address this
problem. Tvset is described in IBMTs Operator's Guide for
the full p-System, and in the reference manual for the
Runtime Support package.

When you are ready, return to your reading of Chapter
1, Section 1.3.

THE P-SYSTEM
ON THE Tl PROFESSIONAL

This appendix summarizes the aspects of the UCSD
p-System which are specific to the Texas Instruments
Professional Computer. Each section corresponds to a
particular point in Part 1 where you need to follow a
computer-specific sequence of operations.

F.l STARTING THE p-SYSTEM THE FIRST TIME

This section is coordinated with the Section 1.3 in Part 1.
It contains two subsections. The first subsection helps you
to fill out the inside front cover of this book. The second
subsection describes how to start the p-System running on
the TI Professional Computer.

Recording Your p-System Details

The specific information, below, is needed to fill in the
blank areas in the Ttp-System Details for Your Computer"
form that is inside the front cover of this book. Much of
this information is not yet relevant to you, but we ask you

401

402 The p-System on the TI Professional Appen. F

to fill it in, nevertheless. As you progress through the
hands-on exercises of Part 1, you will need this
information. It is convenient to get the information
recorded once and for all.

The information to be written in the blanks is
emphasized in the text below. (The arrow key descriptions
are not emphasized. You may want to simply draw in the
arrow symbols.) When the CTRL or SHIFT key should be
typed together with another key, we put a hyphen in
between. Example: "CTRL-C".

Personal computer type: TI Professional Computer
Major p-System version: IV.1

640 blocks = size of double-sided diskette volumes
#4: storage device: left drive
#5: storage device: right drive
RAM disk volume name: RAM:
Universal Medium accessibility: Native format
Utility to format diskettes: FORMAT.CODE
Need to Z(ero after formatting? No

EretJ
lbs]]
[[delete line]]
[[break]]
Istop/startl
[[flush]]
[[esc]]
leof]]
[[tab]]
[[up]]
[[down]]
[[right]]
[[left]]
lexch-insj
lexch-del]]
letxl

RETURN
BACKSPACE
CTRL-BACKSPACE
SHIFT-BREAK/PAUSE
BREAK/PAUSE or CTRL-S
CTRL-F
ESC
CTRL-C
TAB
Arrow pointing up, next to HOME
Arrow pointing down, next to HOME
Arrow pointing right, next to HOME
Arrow pointing left, next to HOME
INS
DEL
CTRL-C

Sec. F.l Starting the p-System the First Time 403

Bootstrapping the p-System

This subsection describes how to start the p-System running
on the TI Professional Computer. This process is called
Tlbootstrapping.,f

Open the drive cover of the left hand drive, insert the
PSYS: diskette, and close the drive cover. The diskette
should be inserted with the label facing up (just under your
thumb).

If your system power is off, turn on your printer (if
you have one) and then switch on your computer. There
should be several seconds of silence as your computer
checks itself. If the check up finds no problems, the left
drive light comes on and you will hear whirring as the
p-System is read into main memory.

If your power was turned on before you inserted your
diskette, you may be asked to type a key in order to
continue the bootstrapping process. After you insert the
diskette, type any key and the bootstrapping continues as
just described.

After you have already bootstrapped the p-System, you
can bootstrap it again without having to turn the power off
and back on. With your left hand, press and hold down the
two keys marked "CTRL" and "ALT" on the left side of
your keyboard. While holding those keys down, press the
key marked "DEL". Release all three keys together. The
left drive light comes on and you hear whirring as the
p-System is read into main memory. Return to Section 1.3.

F.2 MAKING BACK UPS AND CREATING MYVOL:

This section describes operations that you need to do in
Section 1.7 of Part 1.

There are two tasks in this section. The first is to
make a back up copy of your system diskette and begin
using the back up. The second task is to make an empty
p-System volume called MYVOL:. Each of these tasks
requires a blank diskette.

404 The p-System on the TI Professional Appen. F

Before you can use a new diskette with the TI
Professional Computer, the disk must be formatted. If one
of your old disks goes bad, you may also be able to recover
and continue using it if you format it again.

Formatting a disk completely erases any information you
had previously stored on it. Don’t apply this process to a
used disk unless you're positive you don't need the
information it contains.

Use X(ecute like this:

Execute what file? #5:F0RMAT EretJ

The FORMAT program displays this prompt:

Format which unit number (4#5»9j»10) ?

Before doing anything else, remove the system disk from its
drive. Then, place your first blank diskette in drive #5
and respond to the FORMAT prompts like this:

Format which unit number (4#5»9»10) ? 5 Eretl
Place disk In unit 5 and press return... EretH

FORMAT will also ask you for a name for the new
diskette. When this process is completed, the number of
blocks on the newly formatted diskette is displayed. Your
drives have a 640 block capacity.

If an error is reported during this process, the diskette
you’re formatting is probably flawed. Set it aside and try
another.

Remove your newly formatted disk from the drive and
set it aside. Now format your second blank diskette in
the same way. When the formatting is done, leave the new
disk in the drive and replace the system disk in drive #4.

405 Sec. F.2 Making Back Ups and Creating MYVOL:

Invoke F(ile and its Transfer activity. To copy your
system disk to the newly formatted disk in drive #5, follow
the sequence of prompts and responses shown below:

Transfer what file? #4: tretl
To where? #5: IretJ
Transfer 320 blocks? (Y/N) X
PSYS: -> #5:

Remove the new system diskette from drive #5 and
label it. (If you write on the label after it’s on the
diskette, be sure to use a felt tip pen.) Your back up task
is now complete.

Put the first blank diskette back into drive #5 and
invoke the Z(ero activity. The following sequence of
prompts and responses give the volume the name MYVOL:
with a size of 100 blocks:

Zero dir of what volume? #5: QretJ WtHKRN/KNi
Destroy FORMAT: ? Y - X '/v

's'

Duplicate dir? _N
Are there 320 blks on the disk ? (Y/N) N
blocks on the disk? 100 Iret]]
New vol name ? MYVOL: Iretl
MYVOL: correct ? Y
MYVOL: zeroed

■

You now have a MYVOL: disk. To confirm that,
invoke the V(olumes activity. MYVOL: should appear on
the on-line volumes list next to "5 #." Remove MYVOL:
from the drive and label it as you did your new system
volume.

The last thing to do is start up the p-System again
using your newly made system disk. Remove the original
system diskette and store it in a safe place. Using your
new system diskette, follow the procedure outlined in the
first section of this appendix. When your new p-System
diskette has bootstrapped, return to Part 1 at Section 1.9.

406 The p-System on the TI Professional Appen. F

F.3 EDITOR SET UP DETAILS

This section is coordinated with Section 2.1 in Part 1.

Since the Screen-oriented Editor resides on the PSYS:
diskette, there is no need to set up the Editor on the TI
Professional Computer.

F.4 PASCAL SET UP DETAILS

This section is coordinated with Section 3.4 in Part 1, and
tells you where to find the UCSD Pascal compiler with the
TI Professional Computer.

Assuming that you have aquired the Pascal compiler,
the disk labeled PDEV: contains it. Locate that disk now
and simply insert it in drive #5:. The name of the Pascal
compiler (including the volume name) is
PDEV:SYSTEM.COMPILER. Return now to Section 3.4, and
we will show you how to copy SYSTEM.COMPILER onto
MYVOL:.

F.5 FORTRAN SET UP DETAILS

This section is coordinated with Section 3.5 in Part 1.
FORTRAN is not available with the TI Professional
Computer at the time of this writing. You may want to
look through Section 3.5 just for interest.

THE P-SYSTEM
ON OSBORNE COMPUTERS

This appendix summarizes the aspects of the UCSD
p-System that are specific to the Osborne 1 and the
Osborne Executive computers. Each section corresponds to
a particular point in Part 1 where you need to follow a
computer-specific sequence of operations.

G.l STARTING THE p-SYSTEM THE FIRST TIME

This section is coordinated with the Section 1.3 in Part 1.
It contains two subsections. The first subsection helps you
to fill out the inside front cover of this book. The second
subsection describes how to start the p-System running on
an Osborne computer.

Recording Your p-System Details

The specific information below is needed to fill in the
blank areas in the tTp-System Details for Your Computer”
form that is inside the front cover of this book. Much of
this information is not yet relevant to you, but we ask you

407

408 The p-System on Osborne Computers Appen. G

to fill it in, nevertheless. As you progress through the
hands-on exercises of Part 1, you will need this
information. It is convenient to get the information
recorded once and for all.

The information to be written in the blanks is
emphasized in the text below. (The arrow key descriptions
are not emphasized. You may want to simply draw in the
arrow symbols.) When the CTRL key should be typed
together with another key, we put a hyphen in between.
Example: "CTRL-C".

Personal computer type: Osborne 1 or Executive
Major p-System version: IV.l

390 blocks = size of Osborne format diskette
320 blocks = size of Universal Medium format diskette
#4: storage device: Drive A (top drive on Executive)
#5: storage device: Drive B (bottom drive on Executive)
RAM disk volume name: not supported
Universal Medium accessibility: a native format
Utility to format diskettes: UTIL.CODE
Need to Z(ero after formatting? Yes

(LretU
ffbsll
[[delete line]]
Ibreakll
[[stop/startU
EflushJ
flescj
[[eof]]
Etabll
Hup]]
IdownJ
Bright!
IleftH
[[exch-insU
Bexch-delJ
letxj

RETURN
Arrow pointing left
CTRL-U
CTRL-B
CTRL-S
CTRL-F
ESC
CTRL-C
TAB
Arrow pointing up
Arrow pointing down
Arrow pointing right
Arrow pointing left
CTRL-X
CTRL-Z
CTRL-C

th_ tint!, Can ®ur"mariz? the remainder of this subsection in
Other notes portion of the inside front cover.

Sec. G.l Starting the p-System the First Time 409

The Osborne 1 p-System can maintain a screen image
that has more horizontal lines and more vertical columns
than are actually ‘displayed. In other words, the visible
screen is simply a "window" into a larger display maintained
inside the computer. You can move this window around by
typing CTRL together with any of the arrow keys. This
capability is particularly useful if you have a 52-column
screen and wish to work with 80-column screen images.

If you have an Executive, the previous paragraph
doesnTt concern you, since your screen is capable of
showing 80-column screens directly.

On both Osborne models , keys on the keyboard repeat
automatically if you hold them down more than a second or
so.

Bootstrapping the p-System

This subsection describes how to start the p-System running
on an Osborne computer. This process is called
"bootstrapping."

The first step is to turn your computer on (if it was
off), or press the RESET button (if your computer was
already on). The Osborne lTs power switch is located in
the same compartment where the power cord is attached.
The Executive's power switch is the blue button on the
right side of the front panel.

After you take this first step, you are immediately
prompted by a message on the screen to insert a disk in
drive A and press RETURN. Open the drive cover of Drive
A, insert your p-System diskette (which is labelled
"OSBORNE:"), and close the drive cover. The diskette
should be inserted with the label facing up (just under your
thumb).

After the disk is loaded, press RETURN. The light on
Drive A will come on and you will hear whirring as the
p-System is read into main memory. After considerable disk

410 The p-System on Osborne Computers Appen. G

activity, the p-System "welcome” message appears on the

screen.

If you have an Executive, you can return now to your
reading of Section 1.3. If you have an Osborne 1, the top
line of your screen should look like this:

Command: E(dit, R(un, F(ile, C(omp,? [IV.12 B]

This is a portion of the Command menu (which will be
explained when you return to your reading of Part 1). If
your computer is set up to display 80 columns at once on
the screen, then this top line occupies only a fraction of
the width of your screen. If, on the other hand, your
computer can display only 52 columns, then this line
occupies most of your screen.

The p-System is most commonly used with 80-column
screens, so we have assumed that size in the rest of this
book. The p-System can adapt to other screen sizes. The
Osborne 1 p-System initially assumes that your screen can
only show 52 characters at a time.

As we mentioned earlier, your screen is a "window"
into a larger screen area. You can type CTRL and one of
the arrow keys to move this window. Therefore, for
instance, if you should find yourself typing characters off
the right edge of the screen, you can type CTRL and left
arrow to move the window to the right, so you can see the
area of the screen on which you’re typing. Use CTRL with
right arrow and left arrow right now to experiment with
moving the window. When youTre finished experimenting, be
sure to return the window to its original position.

Because the Osborne actually maintains a larger screen
than is visible, you can tell the p-System to assume an 80-
column screen, and just use the window movement keys
when you want to look at a portion of the screen that is
not visible. As you get more experienced with the
p-System, and particularly as you get into text editing and
program development in Chapters 2 and 3, you will probably
want to switch the p-System to an 80-column mode of
operation. We’ll deal with that when you return to this

Sec. G.l Starting the p-System the First Time 411

appendix from Chapter 2.

Now you can return to your reading of Section 1.3.

G.2 MAKING BACK UPS AND CREATING MYVOL:

This section describes operations that you need to do in
Section 1.7 of Part 1.

There are two tasks in this section. The first is to
make an empty p-System volume called MYVOL:. The
second task is to make a back up copy of your system
diskette and begin using the back up. Each of these tasks
requires a blank diskette, so you need two of them to go
on from here.

Before you can use a new diskette with your Osborne
computer, the disk must be formatted. If one of your old
disks goes bad, you may also be able to recover and
continue using it if you format it again.

Formatting a disk completely erases any information you
had previously stored on it. Don't apply this process to a
used disk unless youTre positive you don't need the
information it contains.

You can use the UTIL program on your OSBORNE:
diskette to format diskettes and do several other useful
housekeeping operations. Invoke UTIL now by typing
X UTIL CretJ. The UTIL program displays this prompt:

Four housekeeping activities can be selected from this
menu. Our immediate need is to format a diskette, so
select F(ormat by typing F. You are asked to indicate the
drive in which youTre going to put the disk you want
formatted. Type 5 HretJ to select drive B (which the
p-System refers to as drive #5).

You are now asked to choose between Osborne format and
Univeral Medium format for your new disk. Refer to your

412 The p-System on Osborne Computers Appen. G

Osborne documentation for a discussion of these two
formats. For now, simply type O. When you are prompted
to do so, load the blank disk in drive B, and press return.
The format operation then begins, and dots are written to
your screen as the operation proceeds. Here is the screen
you should see when the format operation successfully
completes:

Disk Format Utility

Enter unit number of disk to be formatted (4,5) 5 (EretJ

WARNING: Format will destroy all data on the disk

OSBORNE or Universal format? (0/U) 0

Place disk to be formatted In drive #5
and press RETURN when ready Hret31

Formatting .

Format successfully completed

If an error is reported during the format operation, the
diskette youTre formatting is probably flawed. Set it aside
and try another.

Now you need to create an empty volume called
MY VOL: on the diskette youTve just formatted. The Z(ero
activity in the Filer is the tool you need for this purpose.
Type ^ to leave the UTIL program, then F Z to invoke the
FilerTs Z(ero activity. Follow the sequence of prompts and
responses below to create the empty volume.

Zero dir of what volume? #5: IretJ
DuplIcate dir? N
blocks on the disk? 100 IretJ
New vo I name ? MY VOL: [[ret 31
MYVOL: correct ? Y
MYVOL: zeroed

You now have a MYVOL: disk. To confirm that,
invoke the V(olumes activity. MYVOL: should appear on
the on-line volumes list next to "5 #."

Now we move on to the second task: making a copy of
your OSBORNE: diskette. Use Q(uit to leave the Filer and
execute UTIL by entering the following: X UTIL fret]].

Sec. G.2 Making Back Ups and Creating MYVOL: 413

This time, press B to select the B(ack-up activity. You are
immediately asked to identify the drive containing the disk
you want to copy. Since the disk you want to copy is
OSBORNE: in drive #4 (drive A, that is) enter 4 ffretj in
response to this prompt. (You could also choose to copy
the disk in drive B by entering 5 HretJ.)

After a reminder about the copy operation you have
requested, you are asked confirm your readiness by pressing
IretB. Then the destination disk (which will become the new
system disk) is formatted and the copy made. Here is the
screen that results from a successful copy operation:

Disk Copy Utl11ty

Enter source disk unit number (4»5> 4 IE ret J

Place SOURCE disk In unit H
Place DESTINATION disk In unit #5
ANY DATA IN DRIVE 5 WILL BE ERASED!
and press RETURN when ready ([ret J

Formatting...

Copying

Copy completed.

When the copying is done, remove the newly made
system disk from Drive B and label it T,OSBORNE:,f. (If you
write on the label after itTs on the diskette, be sure to use
a felt tip pen.) Remove your original system disk from
Drive A and store it away in a safe place. Put your newly
made copy in Drive A and press RESET, followed by
RETURN, to start up the p-System using the new diskette.

Both tasks are now complete. Return to Part 1 at
Section 1.9.

G.3 EDITOR SET UP DETAILS

This section is coordinated with Section 2.1 in Part 1.

Since the Screen-oriented Editor is already on the
OSBORNE: diskette, there is no need for you to set up the
Editor. If you have an Executive, return now to Section

414 The p-System on Osborne Computers Appen. G

2.2. If you have an Osborne 1, you may need to change
the screen size configured for your p-System. The rest of
this section explains how.

If you p-System is still configured to use a 52-column
screen, you should probably change to the 80-column
orientation for this chapter. If your screen can show only
52 columns, you can use CTRL and the arrow keys to see
any part of the 80 columns that you want.

The file called SYSTEM.MISCINFO on your OSBORNE:
diskette contains the screen width used by the p-System. To
change to 80-column orientation, you need to establish the
file 80COL.MISCINFO as your SYSTEM.MISCINFO. Enter
the Filer and invoke the C(hange activity twice as shown in
the screens below to make this change, and preserve your
current MISCINFO file as 52COL.MISCINFO:

Change what file? SYSTEM.MISCINFO EretJ
To what? 52C0L.MlSCINFO I ret 31
SYSTEM.MISCINFO -> 52COL.MlSCINFO r

Change what file? 80COL.MI SC I NFO tret 3}
To what? SYSTEM.MISCINFO [[ret31
80COL.MISC INFO -> SYSTEM.MISCINFO

You can use a similar sequence if you ever want to
change back to the 52-column orientation. Return now to
Section 2.2.

G.4 PASCAL SET UP DETAILS

This section is coordinated with Sections 3.4 and 3.5 in
Part 1. At the time of this writing, Osborne has not vet
released the Pascal and FORTRAN compilers for use on
Oshorne computers. Therefore, we don't know the details
of settmg up to use them. The documentation supplied
with your anguage should describe the files needed for
using it. When you know the files that are needed, return

0 Part 1 and follow the directions for copying the file(s)
to your MY VOL: volume. S lle's;

THE P-SYSTEM

ON OTHER COMPUTERS

This appendix summarizes the computer-specific information
that is needed in order to use this book. There is not
enough room in the book to have an appendix for each of
the computers that run the UCSD p-System. This appendix
provides general guidance for those using computers that we
haven’t covered specifically in the previous appendices.

Your p-System supplier may have anticipated your use
of this book and provided a section in your p-System
documentation that follows the format of this appendix. If
so, use that section instead of this appendix. Otherwise,
use this appendix to help you find the information that you
need in the documentation provided by your p-System
supplier. If your documentation package contains a
supplement that is specific to your computer, that is an
excellent place to look.

We assume here that your computer’s hardware is
installed and configured correctly. We also assume that the

415

416 The p-System on Other Computers Appen. H

p-System is adapted to your particular computer. If it is
not, you should read Section 1.2.

There are two major configurations of the p-System
offered on many computers. One is called the runtime
system and the other is called the development system.

The runtime system is an inexpensive way to get the
capability of running p-System application programs that
others have developed. This package does not necessarily
include all of the major p-System components. If this is
the case with the p-System package that you have, the
parts of this book that deal with those components will not
apply directly to you. You may want to look through those
sections anyway to help decide whether you want to
acquire the full p-System.

If you want to develop your own programs, you’ll need
to acquire the development system. This package usually
includes the major p-System components described in this
book (although some of these components may be optional
products).

There are certain minimum hardware facilities that are
required in order for the p-System to run on a particular
personal computer. These minimum requirements are:

The UCSD p-System cannot run on all personal
computers; there are certain minimum hardware
requirements. These requirements are:

o At least 64k bytes of main memory. (Each lfkTT of
memory is 1,024 bytes.)

o At least 160k bytes of disk storage for simple
applications and 320k bytes of disk storage for larger
applications and program development work.

o A display and keyboard.

Sec, H.l Starting the p-System the First Time 417

H.l STARTING THE p-SYSTEM THE FIRST TIME

This section is coordinated with the Section 1,3 in Part 1.
It has two subsections. The first subsection should help
you to fill in the blanks on the inside front cover of this
book. The second subsection is intended to help you start
the p-System running on your computer.

Recording Your p-System Details

The tTp-System Details for Your Computer” form inside the
front cover is a handy place to record computer-specific
details about your p-System. You may want to look at the
corresponding sections in the three previous appendices to
see the type of information you'll be entering.

In the first two blank lines, you should enter the type
of your computer (such as Osborne or Apple) and your
major p-System version (such as IV.O or IV.l). If you are
uncertain about the latter item, wait until the next section,
when you will start up the p-System. The p-System version
number will be displayed in square brackets at the upper
right-hand corner of the screen.

In the next four lines, you can record the type and
capacity of the various disk types that can be used with
your computer. It is likely that youTll only need one of
these lines because you have only one type of disk on your
computer, but we provided four lines just to be safe.

In the p-System, disk capacity is expressed in blocks,
each of which can hold 512 characters. For each type of
disk on your computer, enter its capacity in blocks,
followed (after the colon) by the disk type. For instance,
you might enter ”320” and ”single-sided diskette”. If you
have trouble finding out this disk capacity information, skip
it for now.

In the next two lines, you should identify your first and
second disk drives. These drives are called #4 and #5,
respectively, in the p-System. On your computer, for
example, #4 may be the left drive, drive A, or drive 0.

418 The p-System on Other Computers Appen. H

If a RAM disk is available on your computer, you
should next record the name used to refer to that "disk" in
your p-System. You can go through all of Part 1 of this
book without knowing this name, so don’t worry if you
can’t determine it easily. Enter ’’none” if you don’t have
RAM disk.

On the next line, you can record the kind of access
you have to applications distributed on Universal Medium
diskettes. The possibilities are discussed in Section 1.16.
You can wait until you get to that section to fill in this
item, if you wish. This information is only important when
you want to acquire Universal Medium applications.

The next line refers to a program you may be using in
the next subsection to format your two blank diskettes.
You should record the name of the program used for this
purpose on your computer. Possible names include
DISKFORMAT, FORMAT, TURNKEY, and CONFIG. (AH
these names would have the .CODE suffix.)

The next line also deals with the preparation of
diskettes for use. On some computers, you need to do a
”Z(ero” operation after formatting a disk. On other
computers, the ”Z(ero” is done automatically as part of the
format operation. You’ll find out in the next subsection
which of these alternatives applies on your computer (and
what a ”Z(ero” operation is!).

The remaining items of the form describe the special
keys used in the p-System. Somewhere in your
documentation there should be a table of these keys. This
table should show you what you need to type in order to
produce them. Some of these keys may be obvious. For
example, [[ret]] is often marked ’’RETURN”. For some of
these keys, you may have to type two physical keys,
together. For example, Heof]] is often produced by holding
clown the Control key and typing ”C”. The special keys
you’ll need to use first in Chapter 1 are OLret]], Ibsl and
[[break]].

You can use the ’’Other Notes” section of this form for
any miscellaneous information that you find pertinent.

See, H.2 Making Back Ups and Creating MYVOL: 419

Bootstrapping the p-System

The next step is to start the p-System running on your
computer. You should consult your documentation to see
how to bootstrap the p-System.

This process usually involves placing a bootable system
disk into the appropriate drive, so make sure you have the
correct disk. Depending upon the computer, the
bootstrapping process may take from several seconds to a
minute to complete. When itTs done, a welcome message is
displayed. At that point, you should return to Section 1.9.

H.2 MAKING BACK UPS AND CREATING MYVOL:

This section describes operations that you need to do in
Section 1.7 of Part 1.

There are two tasks in this section. The first task is
to make a back up copy of your system diskette and begin
using the back up copy. The second task is to make an
empty p-System volume called MYVOL:. Each of these
tasks requires a blank diskette, so you need two of them to
go on from here.

On many computers, you must format a new diskette
before you can use it. Sometimes a used disk may be
reformatted in an attempt to eliminate diskette surface
problems. However, formatting a disk completely erases
any information you had previously stored on it. Don't
apply this process to a used disk unless you're positive you
donTt need the information it contains.

If you need to format disks with your computer, you
will find a disk formatting utility in your p-System package.
You may have already determined (in the previous
subsection) what this utility is called. You should now
consult your documentation to find out how to use your
disk formatting program (if your computer requires one).
Then format the two new diskettes.

The next step is to copy a system disk onto one of the
newly formatted disks. If your p-System has a utility that

420 The p-System on Other Computers Appen. H

does this job, use it. Otherwise, place one of the newly
formatted disks in #5, and the system disk in #4 (where it
probably is already). Invoke F(ile and its Transfer activity.
You should now follow the sequence of prompts and
responses shown below. (The fourth line may not appear.)

Transfer what file? #4: Href!
To where? #5: [EretJ
Transfer ### blocks? (Y/N) X
Destroy BLANK: ? X

You should see the capacity of your system disk, (in blocks)
instead of the ft###TT shown above. The "Destroy BLANK:11
prompt only appears if your disk formatting utility places a
p-System directory on a newly formatted diskette. This
prompt may contain some other volume name than "BLANK".

There may be one more step you need to take to
complete your new system disk. During the bootstrap
process, most computers load a small program from a fixed
place on the disk (often at the beginning). This "bootstrap
code" proceeds to load the rest of the p-System and start
it. A system disk is only bootable if it has this code. If
youTre lucky, the volume-to-volume transfer operation above
moved the bootstrap code from your current system volume
to the new one. Alternatively, your disk formatter may
automatically install this bootstrap code on new disks it
creates.

If neither of the possibilities above applies on your
computer, you probably need to do an explicit operation to
copy the bootstrap code from your current system disk to
the new one youTre creating; therefore, you should have a
utility program (or an activity within a utility program) to
do the job. This utility is often called "Booter." Your
documentation should give details on using this bootstrap
copy facility if you need it. Follow those directions to
complete the creation of your new system diskette. If no
such directions are provided, you donTt need them (probably
because your bootstrap code was automatically copied by
one of the methods described in the previous paragraph).

421 Sec. H.2 Making Back Ups and Creating MYVOL:

Now, remove the new system diskette and label it. (If
you write on the label after itTs on the diskette, be sure to
use a felt tip pen.) The back up task is now complete.

In order to create MYVOL: with a size of 100 blocks,
put the remaining blank disk in drive #5 and invoke the
Z(ero activity. The function of Z(ero is to create an
empty volume (that is, one that has no files). You should
select Z(ero and respond like this:

Zero dir of what volume? #5: (ErefB
Destroy BLANK: ? (Y/N) _

The second line may not appear. If it does appear, you
should look at the volume name (it may not be "BLANK:").
If that volume name is similar to "BLANK:" or "FORMAT:",
then this is the name that your disk formatter gave to your
new disk. If this volume name is similar to "SYSTEM:",
"PASCAL", or "PSYS:", then you are using Z(ero on the
WRONG disk!! You have accidentally started to Z(ero one
of your p-System diskettes; type "N" and start over, making
sure to follow the instructions above carefully.

Z(ero displays several more prompts. If the
"Destroy BLANK: ?" prompt appeared above, you should
follow this sequence of prompts and responses:

Zero dir of what volume? 05: Hretl
Destroy BLANK: ? (Y/N) _
Duplicate dir? _N
Are there 000 blks on the disk ? (Y/N) _N
0 blocks on the disk? J_00 gretll
New vol name ? MYVOL: ffiretl
MYVOL: correct ? _Y
MYVOL: zeroed

If the "Destroy BLANK: ?" prompt did not appear, you
should follow this sequence of prompts and responses:

422 The p-System on Other Computers Appen. H

Zero dir of what volume? #5: [EretJ
Duplicate dir? _N
blocks on the disk? 100 dretl
New vol name ? MYV0L: (EretJ
MYVOL: correct ? _Y
MYVOL: zeroed

You now have a MYVOL: disk. To confirm that, you
can invoke the V(olumes activity. MYVOL: should appear
in the on-line volumes list next to ,T5 #!T. Remove MYVOL:
from the drive and label it as you did your new system
volume.

The last thing to do is start up the p-System again
using your newly made system disk. Remove the original
system diskette and store it in a safe place. Using your
new system diskette, follow the bootstrapping procedure
that you used earlier in this appendix. If there is a short
cut procedure for booting when the computer is already
turned on, you may want to use it. When your new
p-System diskette has successfully bootstrapped, return to
Part 1 at Section 1.9.

H.3 EDITOR SET UP DETAILS

This section is coordinated with Section 2.1 in Part 1.

If you have the full p-System, you have the Screen-
oriented Editor. It is probably on your system diskette
which means that there is nothing that you need to do in
order to set it up.

If SYSTEM.EDITOR is on another disk, you need to
copy it onto MYVOL:. Enter the Filer and select T(ransfer.
Now, place the disk containing SYSTEM .EDITOR in #4, and
MYVOL: in #5. Follow this sequence:

Transfer what file ? 14;SYSTEM.EDIT0R (EretU
To where ? MYVOL:SYSTEM.EDITOR ITrfttli

Now place the system disk back into #4 and return to the
ommand menu by typing Q. You can now proceed through

Chapter 2.

Sec. H.3 Editor Set Up Details 423

If you have the runtime system, it is possible that you
do not have the Editor. You may want to look through
Chapter 2 anyway, however.

H.4 PASCAL SET UP DETAILS

This section is coordinated with Section 3.4 in Part 1, and
is intended to help you find the Pascal compiler. It is
possible that you do not have this compiler. For example,
you may have the runtime system, or you may only have
FORTRAN. If this is the case you will not be able to
follow along with Section 3.4.

If you do have the Pascal compiler, it is probably on a
disk with a name such as PASCAL:. Locate that disk now,
insert it in drive #5: and invoke the FilerTs L(ist directory
activity. (Type F L #5: Hretj from the Command menu.)
Most likely, you should see the file SY STEM .COMPILER. If,
for some reason, the compiler has a different name, you
should note it. You should also note the name of the disk
that contains the compiler.

On IV.O systems, it is possible that you have two
compilers; one for two-word real numbers, and one for four-
word real numbers. (See Section 1.18 for a discussion of
real number sizes.) You should note the name of the
compiler that corresponds to the real number size of the
system that you are using. For example, you may have
these two files:

SYSTEM.COMPILER
PASCAL4.COMPILE

The first compiler is for two-word systems and the second
compiler is for four-word systems. Your documentation
should state the real size of the system disk that you are
using.

Return now to Section 3.4, and we will show you how
to copy the compiler onto the MY VOL: volume.

424 The p-System on Other Computers Appen. H

H.5 FORTRAN SET DP DETAILS

This section is coordinated with Section 3.5 in Part 1, and
attempts to assist you in setting up the FORTRAN-77
compiler and associated runtime library. FORTRAN may
not be available with your particular p-System package.

If you do have FORTRAN-77, it is usually on a disk
labeled FORTRAN:. Locate that disk now, and insert it
the drive #5:. Invoke the Filers L(ist directory activity to
view the directory of that disk. (Type F L #5: HretJ from
the Command menu.) You will probably see the following
files:

FORTRAN2.CODE
FORTLIB2.CODE
FORTRAN4.CODE
FORTLIB4.CODE

There is one compiler/runtime library set supporting
two-word real numbers, and one set supporting four-word
real numbers. If you are using a two-word real system, you
need the first two files. Similarly, you need the last two
files if you are using a four-word system. If you are
uncertain which size of real numbers is supported by the
system you are using, you should consult your other
documentation. The system disk should be designated as
supporting two-word reals, four-word reals, or no real
number arithmetic at all.

If the system that you are using doesn!t support real
numbers, you canTt use FORTRAN. You may have another
system disk which does support real numbers. With some
systems you must first reconfigure the p-machine emulator
in order to use real numbers. This should be explained in
your other documentation.

When you have determined which two of these four
files are needed, return to Section 3.5, and we will show
you how to copy these files onto the MYVOL: volume.

GLOSSARY

Activity: An item on the menu of a p-System program.
For example, X(ecute is an activity on the Command menu.

Adaptable System: A variation of the p-System that allows
you to write the low-level device interface code which
handles the peripherals on a specific computer. Once this
installation process is done, the p-System can be used on
the new computer.

Anchor: In the Screen-oriented Editor, the position of the
cursor when D(elete is invoked. When the cursor is moved
away from this position, text disappears. When the cursor
is moved toward this position, text reappears.

Application Program: A computer program that meets
specific needs of a personal computer user. Examples
include a payroll program or an oil well supervision
program.

Assembler: A program that translates human-readable
assembly language into machine code.

Associate time: The time taken by the Version IV
operating system to find and stitch together the units

425

426 Glossary

referenced by a program. This stitching together must
occur before the program can begin execution.

Back File: A back up file for text files that is identified
by the suffix .BACK; for example, FILENAME.BACK.

Back Bp: The operation of making an extra copy of
important information (usually on a storage volume, in this
book). Also, the extra copy that results from this
operation.

Bad Block: A 512-byte area on a storage volume that is
somehow damaged. The result is that information cannot be
stored or retrieved from there.

Bad File: An immobile file used to prevent the use of bad
blocks on a disk. A bad file is identified by the suffix
.BAD; for example, BAD.00120.BAD.

BASIC: A popular high level programming language that is
supported in the p-System.

BIOS: Basic Input/Output Subsystem; that portion of a
p-machine emulator that is specific to a particular brand of
computer.

Bit: The minimum unit of storage on most computers. A
bit is either "on" or "off."

Block: The 512-byte unit of storage and retrieval that is
used with p-System storage volumes.

Block-Structured Device: Referred to in this book as
"Storage Volume." Earlier p-System documentation, and
many p-System prompts and error messages still use "block-
structured device," or "blocked device," when referring to
storage volumes.

Bootstrap: The action of starting (or that piece of code
which starts) the p-System running. You must bootstrap the
p-System before you can do anything with it.

Boot Volume: See "System Disk."

Bug: A defect in a program that causes it not to operate
as intended.

Byte: A unit of computer storage. Usually has the
capacity to store 8 bits of information, or a number in the
range 0 through 255.

Glossary 427

Chaining: See "Program Chaining."

Client: A program or unit which uses another unit.

Code File: A file that contains the compiled or assembled
version of a program or program segment. Usually
identified by the suffix .CODE; for example,
FILENAME.CODE.

Code Segment: The smallest component of a p-System
program that can be moved into (or removed from) main
memory during the running of the program.

Communication Volume: A p-System I/O device that
doesnTt store information on a long-term basis; for example,
the console or the printer.

Compilation Unit: A unit (as represented in any of the
three p-System languages) or a program. The smallest
module that a language allows to be compiled separately.

Compiled Listing: The source lines of a program,
annotated by the compiler with details of the results of
compilation, including sizes of statements, sizes of data
areas, and other information.

Compiler: A program that translates the human-readable
source text of a program into p-machine-executable p-code.

Copy Buffer: In the Editor, a storage area in which text
can be temporarily stored after it has been deleted from
the workspace or while it is being copied from one place to
another in the workspace.

Cursor: An indicator that highlights a particular point on a
display screen. In many situations, characters typed at the
keyboard appear on the screen at the location of the
cursor.

Data Entry Prompt: See "Prompt."

Data File: A file that contains arbitrary user data. No
particular internal structure is assumed. No special file
name suffix is required, but .DATA is often used.

Declare: To establish the name and type of an identifier
used in a computer program. Some languages (Pascal, for
instance) require chat all identifiers be declared before they
are used.

428 Glossary

Decode: A utility used to inspect the contents of code
files.

Default: A state or action which will take effect unless an
explicit action is taken to choose another possibility. For
instance, in S(et Environment in the Editor, there are many
options that can be set. All of them have default settings
which determine the operation of the Editor until they are
changed.

Default Disk: The volume where the p-System looks for a
file unless the file specification explicitly indicates another
volume.

Delimiter: A "fence" that marks the boundaries of a
sequence of characters. In the Editor, for instance,
delimiters enclose the target string sought by F(ind. These
delimiter characters cannot be letters or numbers, but they
can be any of the special characters, such as "&" or "/".

Device: Peripheral equipment accessible to the p-System.
There are two varieties: storage and communication.
Originally, and sometimes still, a device was referred to as
a "unit." This usage has been changed to avoid confusion
with the UCSD Pascal language construct of the same
name.

Device Number: A number used to refer to a particular
storage or communications volume. It is always preceded
by a number sign (#) and usually followed by a colon
(:). Also known as "unit number." Example: #5:.

Direction Indicator: In the Screen-oriented Editor or
EDVANCE, the flag at the upper left corner of the screen
that indicates the assumed direction for various editor
operations.

Directory: An area on a storage volume that contains
"house-keeping" information (such as names and locations)
about the files on the volume.

Directory Listing: A human-readable list, usually on the
console, of the files on a given storage volume, along with
miscellaneous information about each file.

Editor: A p-System program that is used to examine, create
and modify text files.

Glossary 429

EDVANCE: The Advanced Editor. EDVANCE incorporates
a wide range of enhancements over the p-System
Screen-oriented Editor.

Execute: To give control of the p-System to a program
(usually via the X(ecute activity).

Execution Error: An error detected by the p-System during
the execution of a program. When such an error is
detected, a message is produced on the console. The
message includes error coordinates indicating the program
section that was executing when the error occurred.
Usually the program must be canceled and the p-System
reinitialized.

Execution Option String: A sequence of execution option
statements, usually entered in response to the X(ecute
prompt. Individual execution options can affect a variety
of aspects of p-System operation, such as the prefix
volume, the source of input, and so on.

Extended Memory: A facility available on some p-Systems
that allows programs to use up to 64,000 bytes of main
memory for data, plus another 64,000 bytes for program
segments.

File: A named collection of information on a storage
volume. Also (less frequently), a stream of information
transmitted through a communication volume.

File Specification: A description of a source for input or
a destination for output in the p-System. A file
specification has three major components, all of which are
optional: the Volume ID, the File Name, and the Size
Specification.

File Suffix: One of several special endings for file names.
The file suffix usually indicates the file type. The
standard file suffixes are .TEXT, .CODE, .SVOL, .BACK,
.DATA, .BAD, and .FOTO.

Floating Point Number: See "Real Number."

Format: To prepare a disk for use with the p-System. This
involves writing addresses and other control information on
the disk. Any user information previously stored on the
disk is destroyed by this operation.

430 Glossary

FORTRAN-77: A popular high level programming language
supported in the p-System.

Foto File: A file that contains graphic images for use by
Turtlegraphics. The name of the file has the suffix .FOTO;
for example, PICTURE.FOTO.

Fragmented: The condition of a p-System storage volume
when the total unused space on it is spread among many
small areas. The size of the largest file that can be
stored on a fragmented volume is the size of the largest
single area.

Identifier: The name of an object in a programming
language such as Pascal.

I/O: Input and output.

I/O Error: An error detected by the p-System during an
input or output operation. For example, a disk write will
fail if the disk has been inappropriately removed from its
drive. An I/O error is one kind of execution error.

I/O Redirection: A feature that allows the p-SystemTs
input to come from some place other than the keyboard.
Also, output for the p-System can be sent to some place
other than the screen.

I/O Result: A number indicating the success or failure of a
p-System I/O operation. If this number is zero, the
operation was a success; otherwise, the number identifies
the problem that occurred during the I/O operation.

Instruction Set: The fundamental operations that a
microprocessor is capable of performing. Different kinds of
microprocessors usually have different instruction sets.

Integer number: A whole number (without a fractional
part).

Interpreter: See Tfp-machine emulator.”

KSAM: Keyed sequential access method; a file management
facility available for the p-System.

Library: A code file that contains one or more units which
can be used by programs or other units.

Library Text File: A text file containing a list of library
file names. When a program is invoked, the libraries listed

Glossary 431

in the current library text file are searched for any units
needed by the program.

Library Utility: The p-System library management facility.
It is used to inspect, modify, and create libraries and other
code files.

Linker: A p-System program that combines assembled code
files with each other or with a compiled code file. Also
called a tTlink editor.11

Long Integer: A language feature of UCSD Pascal that
supports integer arithmetic with up to 36 decimal digits of
precision.

Marker: A named, invisible flag on a particular location
within a text file.

Menu: A list of available activities that is displayed on the
screen by the operating system and many p-System
programs. An activity can be selected from a menu with a
single keystroke.

Microprocessor: A miniaturized computer. Provides the
computational power for most personal computers. Executes
the instructions of the software running in the personal
computer.

Module: A component of some larger structure with the
attribute that it can be handled separately from the rest of
the structure in some sense. A UCSD Pascal unit is a
module of a program.

Mount: To cause a subsidiary volume to be accessible to
the p-System.

Multitasking: The execution of two or more tasks
concurrently within a single UCSD Pascal program.

Native Code: Machine level code that is produced by the
native code generator as the translation of a section of
p-code.

Native Code Generator: A program that translates
portions of an executable p-code file into native code. The
resulting code file always contains a combination of p-code
and n-code.

432 Glossary

n-code: See "Native Code,"

Nonblock-Structured Device: Referred to in this book as
"Communication Volume." Earlier p-System documentation,
and many p-System prompts and error messages still use
"nonblock-structured device," or "unblocked device," when
referring to communication volumes.

Object code: The machine-readable representation of a
computer program.

On-Line: The status of a volume when the p-System can
access it. For a storage volume to be on-line, the disk
must be in the appropriate drive. For a communications
volume to be on-line, the I/O device must be properly
connected and turned on.

Pascal: A widely used high level language. UCSD Pascal,
an extended version of this language, is the principal
programming language in the p-System.

p-code: Psuedo-code: p-machine code generated by the
p-System compilers and executed by the p-machine
emulators.

p-machine: An idealized pseudo-computer optimized for high
level language execution on small host machines; the
foundation of the p-System^ portability.

p-machine emulator: The part of the p-System that allows
a host microcomputer to imitate the operation of the
p-machine. It is implemented in the assembly language of
the host computer.

PME: See "p-machine emulator."

Portability: The ability to move executable code between
dissimilar microcomputers without recompilation or other
change. This is possible in the p-System because programs
are compiled into p-code that can be executed on any
computer on which the UCSD p-System has been installed.

Prefix disk: See "Default Disk."

Print Spooler: A facility for printing text files
concurrently with other activities in the p-System
(particularly text editing).

Glossary 433

Procedure: A named subprogram that handles part of the
job of a larger program or unit.

Program: A set of detailed instructions that direct a
computer in the performance of a specific task. Also, the
process of creating such a set of instructions.

Program Chaining: Causing the automatic execution of one
program from another program.

Prompt: A request (by a p-System program) for information
from the p-System user; the user is expected to enter the
information at the keyboard, followed by flretll.

p-System: See "UCSD p-System.”

RAM: Random Access Memory. See "Main Memory."

RAM Disk: A logical storage volume maintained in main
memory. It can generally be used for the same purposes as
a conventional disk volume (including storage of files), but
the information it contains is usually lost when the
computer is turned off.

Real Number: A number that can have a fractional part,
such as "5.67982".

Reboot: To start up the p-System again. To "rebootstrap."

Redirect: See "I/O Redirection."

Root Volume: See "System Disk."

Runtime Software: p-System software that is needed to
run programs.

Screen-oriented Editor: The principal text editing tool of
the p-System. It is optimized for use with display consoles,
rather than printing consoles.

Script File: A file containing characters representing the
keystrokes that you would type during a session with the
p-System. When p-System input is redirected to this script
file, those keystrokes are read as if they were coming from
the keyboard, and the session is recreated.

Segment: See "Code Segment."

Source text: The human-readable form of a computer
program. (Also referred to as "source code.")

434
Glossary

Special Character: A visible character that is not a
number (0 through 9) and not a letter (A through Z).
Examples of special characters include "*", 7", and

Special Key: A keyboard key that has a particular meaning
to the p-System other than representing an ordinary visible
character. Example: the [[ret]] key.

Storage Volume: An input/output device that can store
information written to it, for retrieval at a later time.
Usually some sort of a disk, but can be an area of main
memory, as well. (See "RAM disk".)

Subsidiary Volume: A file on a storage volume that
contains its own volume structure with a directory and
files. This subsidiary volume becomes accessible to the
p-System when it is "mounted." The subsidiary volume
facility of p-System Version IV.l supports a two-level file
heirarchy.

Substitute String: The character pattern that is to take
the place of instances of the target string which are found
by the R(eplace activity in the Screen-oriented Editor.

•SVOL File: A file identified by the suffix .SVOL that
contains a subsidiary volume; for example, NAME.SVOL.

Syntax: The rules governing the structure of a program
written in a computer programming language.

Syntax Error: A place in a computer program where the
rules of the programming language are violated.

System Disk: The disk from which the p-System was
bootstrapped. It contains the operating system software.
Also known as "root" or "boot" disk. All three of these
adjectives also occur with "volume" instead of "disk."

System Files: The disk files which contain the main
components of the UCSD p-System.

Target String: The character pattern sought by the F(ind
and R(eplace activities in the Screen-oriented Editor.

Text File: A file that contains user-readable information
(as opposed to machine code); usually identified by one of
the suffixes .TEXT or .BACK.

Glossary 435

Turtlegraphics: A package of routines that creates and
manipulates images on a graphic display.

Type Ahead: A capability of a p-System implementation to
store keystrokes that are typed before the p-System is
ready to process them.

UCSD: University of California at San Diego. Site of the
original development work on the p-System.

UCSD Pascal: A programming language, an extended
version of the language Pascal.

UCSD Pascal System: The original name of the p-System.

UCSD p-System: A portable microcomputer software
environment for execution and development of applications
programs.

Unblocked Volume: See tTNonblock-structured Volume."

Unit: A package of routines and associated data structures
written in a p-System programming language (usually UCSD
Pascal). The facilities implemented by the unit (or a subset
of them) can be used by programs or by other units.

Universal Medium: A 5-1/4 inch diskette format that is
accessible to many types of small computers. It facilitates
the distribution of p-System-based personal computer
application programs.

Utilities: Programs that assist in various areas of p-System
use such as developing programs, maintaining files, printing
files, and so forth.

Volume: A logical entity representing a p-System peripheral
device. There are two categories of volumes: storage
volumes (such as a disk) and communicaton volumes (such as
the console or the printer).

Volume ID: Short for "Volume Identifier." The designation
of a particular volume; for instance, its name or device
number.

Window: In the Screen-oriented Editor, the portion of the
display screen that is used to show a section of the
workspace being edited.

Workfile: Special file(s) that are automatically processed by
major p-System components, including the editors and

436 Glossary

compilers. This automatic handling is particularly
convenient during the development of small programs.

Workspace: Text kept in main memory by a p-System Editor
during the editing process. Also called the "buffer.”

Write-Protect: Mark a storage volume in some way so that
an error is reported if the p-System attempts to write
information onto the volume. (Reading is allowed, but
writing is not.) Used to protect valuable data from
accidental erasure. The physical mechanism used to signal
write-protection of a volume varies with the storage
medium used. For instance, 5-1/4 inch diskettes have a
different convention than 8 inch diskettes. Check the
documentation for your computer to find out how to write-
protect the media that you use.

XenoFile: A utility package that allows you to access disks
that contain data formatted for the CP/M operating system.

YALOE: Yet Another Line-Oriented Editor; the p-System
editor used with printing terminals rather than with display
terminals.

Wild Cards: Special symbols in file names that allow a
group of files to be represented by a single file name.

INDEX

A

activity. 23
Adaptable System. 20
A(djust. 93, 194, 206
anchor...71, 211
applications building blocks. 312, 324
arrow keys.64, 191
Assemble. 163
assembler.... 163, 319
assembly language. 163
associate time. 323
asterisk ("*"). 146

B

.BACK fhe.144
HbsU. 64, 140, 141, 189, 190
back up.....36
B(ad blocks... 242, 245

437

438
Index

bad block.
.BAD file. 144
BASIC..... 104, 166, 318
Basic I/O Subsystem (BIOS).300
block. 29, 144, 148
bootstrap code.l4^
bootstrapping.21, 138
Bowles, Kenneth.
[[break]]. 35, 142

C

canonical form (real number).324
CHAIN.326
C(hange.247
client. 157, 305
.CODE file.144
code pool. 309
code segment. 308, 321
command character. 195, 230
Commandio unit.326
Command menu.138, 162
communication volume...30, 44, 155, 275
C(ompile.166
compiler.102, 166
CONSOLE:.44, 156
[[control]]. 141
C(opy. 73, 194, 209
C(opy B(uffer. 198, 209
copy buffer.71, 197

actions that affect it.. 73
Copydupdir utility.292
C(opy F(rom file. 197, 209
cursor

in prompt. 27
in window. 53

cursor movement. 187, 189

D

.DATA file
D(ate.

... 143
37, 249

Index 439

D(ebug...169
Debugger. 169, 319
Decode utility.....320
default disk (volume). 30, 146, 275
D(elete.71, 194, 211
Idelete line!.142, 192
delimiter. 78, 213, 225
development software.9
device number...29, 145, 156, 275
direction indicator.77, 188
directory... 30, 148
directory, duplicate (See "duplicate directory.")
directory listing.30
DIR.INFO.327
disk.5, 145
disk drive. 5
diskette.5

care and handling.••••••.6
operation.6
types. 5

disk file.143
disk surface problems. 245, 279
disk-to-disk transfer.272
dismounting subsidiary volumes.263
display...4
displaying files..273
dollar sign ("$").288
Edownl. 65, 189, 191
duplicate directory. 53, 148, 292

E

E(dit.170
editing tools.313
Editor. 170
anchor.71, 211
command character. 195, 230
copy buffer.71, 197
cursor...27, 63
delimiter. 78, 213, 225
line-oriented mode.216, 229
literal string. 199
markers. 197, 233

440 Index

paragraph-oriented mode.216, 229
paragraph separation. 195
special keys..*. 192
target.78
token.*... 199
window. 83

Editor menu... 170
EDVANCE. 185, 314
entering the Editor...200
entering the Filer.243
Eeo O.142
equals ([[=]!).. 187, 189, 192
error coordinates.36, 132
Errorhandler unit.326
error messages. 159
ttescl. 49, 141, 192
letxj.192
execution error.35
execution option string.159, 180
E(xtended list directory...... 240, 250
extended memory. 310

F

F(ile.
file.
FILE.INFO.,
File Management Units
file name.
Filer menu.
file size specification.
file suffix.
.BACK.
.BAD.
.CODE.
.FOTO.
.SVOL.
.TEXT.
F(ind.
F(lip Swap/Lock.
II flush]]..
format, disk.
FORTRAN.

..171

.. 18, 30, 143

.327

. 327

.143

. 171

. 144

..143

..144

. 144
,.144
. 144
.144
. 144
78, 187, 213 . 252 .142
.37
104, 166, 318

Index 441

foto file,

G

G(et.

H

H(alt.. •.
hard disk
host.

143

125, 155, 253

172 .. 6
157

I

implementation part. 305
indentation, automatic.83
Initialize. 173
initializing disks. 281
I(nsert... 66, 193, 215
integer number.58
interface part... 305, 321

J

J(ump. 76, 187, 197, 219

K

keyboard
K(olumn.
K(runch.
KSAM...

.4

... 195, 220
50, 241, 255
.328

L

leaving the Editor
leaving the Filer.
[[left]].
library.
library text file..

.201

.243
64, 189, 191
. 157
... 115, 158

442 Index

Library utility.
L(ink... 174
Linker. ^19
L(ist directory.240, 258
listing
assembled. 165
compiled... 168
compiled, FORTRAN.118, 134
compiled, UCSD Pascal.108, 133

literal string. 199

M

machine-level code.163
main memory. 5
M(ake. 241, 260
M(argin. 87, 195, 222
Markdupdir utility.292
markers. 197, 233
menu...23, 138
microprocessor. 5, 298

types that support the p-System.301
M(onitor.159, 176
mounting subsidiary volumes.263

N

native code. 323
Native Code Generator.323
N(ew. 125, 155, 262
notational conventions.161

O

object code...
on-line volume. 28, 145, 156, 275
On/Off-line. 263 284
operating system. 8
operating system units.*.*.*.*. . 325

Index 443

P

P(age. 77, 187, 224
paragraph separation. 195
Pascal (See "UCSD Pascal.”)
Patch utility.322
p-code. 163, 300
p-machine emulator. 300
permanent workfile. 154
portability.9
P(refix. 147, 265
prefix disk (volume). 34, 265, 275
principal volume. 283
PRINTER:. 45, 156
printer.5
printing tools. 273, 313, 315
Print Spooler.317
Print utility. 95

command line.99
escape sequence. 98
script file to invoke it.99

procedure. 303
program. ..2
program building blocks.312
Commandio.326
Errorhandler.326
File Management Units.327
KSAM.328
Screenops.. .. 325
Turtlegraphics. 329
Xenofile. 328

prompt. 26, 138
empty response. 28

Q

Quickstart utility. 323
question mark (”?”).288
Q(uit
Editor. 66, 201
Filer.243

444 Index

R

RAM disk.
Real Convert utility.
real number.
sizes.*.

recovering directories.
recovering files.
Recover utility.
REDIRECT.
redirection.
REMIN:.
REMOUT:.
R(emove.
multi-file.

repeat factor.
R(eplace..
Hretl.
Bright!.
root volume..
R(un.
runtime library, FORTRAN
runtime software.

. 7

.323

. 58, 323

.58

. 292

.292

. 294
..326
. 159
.156
. 156
.... 46, 241, 267
. 47, 290
.76, 188
.194, 225
64, 141, 189, 190
.... 64, 189, 191
. 28, 275
.178
.113
.9

S

S(ave..
screen..
Screenops unit.
Screen-oriented Editor.
screen width other than 80 characters
script file.
S(et Environment.

A(uto indent...
C(ommand ch.
F(illing.
L(eft margin.
P(ara margin.
R(ight margin.
S(et tabstops.
T(oken def.

125, 155, 269 . 4
.325
....185
.22, 25
.... 159, 176

85, 195, 228 .229 .230 .229 .229 . 229 .229 .230 .231

Index 445

S(et M(arker.
size specification, file.
software...
source text...
[space]]..
special keys.
SPOOLER.CODE (See "Print Spooler.")
[stop/startH.
storage volume.
subsidiary volume..
.SVOL file...
syntax...
syntax error
FORTRAN.
UCSD Pascal...

SYS.INFO.
SYSTEM. ASSMBLER..
SYSTEM.COMPILER.
FORTRAN.....
UCSD Pascal.

system disk (volume).
SYSTEM.EDITOR.
system file.
SYSTEM.FILER.
SYSTEM.INTERP.....,
SYSTEM.LIBRARY.
SYSTEM.LINKER.
SYSTEM.LST.TEXT.
SYSTEM.MENU.
SYSTEM.MISCINFO.
SYSTEM.PASCAL.
system software.
SYSTEM.SPOOLER..
SYSTEM.STARTUP...
SYSTEM.SYNTAX.
SYSTEM.WRK.CODE.
SYSTEM.WRK.TEXT...
SYSTERM:.

. 197, 233

.144

. 2
.103
.... 64, 141, 189
.21, 140

.135, 142

. 29, 145, 275

.« 157, 283

.. 144, 283

... 102

....121

. Ill

.327

. 152

. 151

. 114

. 106

...28, 146
.61, 151, 187
. 150
..151, 243
. 151
.152, 158
. 152
. 153, 154
. 153
.. 150
.150
.8
. 317
. 23, 152
.151
.... 124, 153, 154
123, 153, 154, 202
.156

T

[tab]],
target

189, 191
.78

446 Index

temporary workfile
terminal.
text file.-
text formatters...
token.
Transfer.

multi-file.
Turtlegraphics....
type ahead.

..154

.5

. 43, 143

. 315

..199
39, 241, 242, 271 . 48, 290
. 329
. 25

U

unit.157, 305
Units
Commandio. 326
Errorhandler.326
File Management.327
KSAM...328
Screenops. 325
Turtlegraphics. 329
Xenofile.328

UCSD Pascal. 104, 166, 318
UCSD Pascal System. 10
UCSD p-System Applications Catalog.17, 55
UCSD p-System Implementations Catalog. 20, 301
UCSD p-System User's Society (USUS). 17

Vendor Catalog.17, 20, 55
Universal Medium. 54

Adaptor program.57
"foreign" format. 57
"native" format. 57

University of California, San Diego (UCSD) .10
Hup!. 65, 189, 191
USERLIB.TEXT. 158
U(ser Restart.179

uses. 305
Utilities
Copydupdir. 292
Decode..
Library. 318
Markdupdir. 292
Patch..
Print..

Index 447

Quickstart...323
Real Convert.323
Recover.....294
Xenofile.....328
Xref...324

V

V(erify.234
version number.24
volume

(See "communication volume.")
(See "default disk (volume).")
(See "on-line volume.")
(See "prefix disk (volume).")
(See "root volume.")
(See "storage volume.")
(See "system disk (volume).")
use of device number to designate.45-46, 145-146
use of volume name to designate. 45-46, 145-146

volume ID.146
volume name. 145, 240, 275
V(olumes. 28, 145, 240, 275, 285
volume-to-volume transfer.272

W

W(hat. 125, 155, 277
WILD. 327
wild cards.287
$.288
=.287
?.288
window.63, 186
workfile. 123-129, 153, 178, 269, 277

X

242, 246, 279
.... 194, 235
. 193
.193

X(amine..,
X(change.,
lexch-dell
Eexch-insI

448 Index

X(ecute....
Xenofile...
Xref utility

32, 180
..,.328
...•324

Y

YALOE...185, 315

Z

Z(ap. 194, 237
Z(ero. 51, 241, 281

■

QUICK INDEX TO MAJOR p-SYSTEM ACTIVITIES

Menu Def. Errors Activity

Page Page

Command: 163 342 Assemble assembly language

166 343 C(ompile high level language
169 343 D(ebug a program
170 344 E(dit a text file
171 345 F(ile manage
172 H(alt the p-System
173 Initialize the p-System
174 345 L(ink edit assembly language
176 346 M(onitor keystrokes for script
178 R(un the workfile
179 346 U(ser program restart
180 347 X(ecute a program

Editor: 206 349 A(djust horizontal positioning
209 350 C(opy text at cursor
211 350 D(elete text
213 351 F(ind text pattern
215 351 I(nsert text
219 352 J(ump in workspace
220 352 K(olumn move
222 353 M(argins enforce
224 P(age move
201 353 Q(uit editor
225 353 R(eplace text pattern
228 354 S(et Environment for editing
233 354 S(et M(arker in workspace
234 V(erify window status
235 355 X(change characters
237 355 Z(ap some text from workspace

Filer*: 245 358 B(ad block scan
247 358 C(hange file name(s)
249 D(ate set
250 E(xtended directory list
252 359 F(lip-swap/lock. Load/unload Filer
253 359 G(et a new workfile
255 359 K(runch a volume
258 L(ist directory
260 360 M(ake a file
262 N(ew. Clear workfile
263 360 0(n-line/off-line
265 P(refix disk choice
243 Q(uit the Filer
267 R(emove file(s)
269 360 S(ave workfile
271 361 transfer file(s)
275 V(olumes list
277 W(hat. Workfile status

p-SYSTEM FILE CONVENTIONS

A File Specification ("Spec") has three parts: Volume ID,
File Name, and Size Spec. These must occur in that order,
but any of the three can be left out. If the File Name is
omitted, the File Spec refers to an entire volume. The
Size Spec is only used when a file is created.

If the Volume ID is...
o left out or T,:n
o Volume Name ":"
o »»*»»

o "#" Device Number

Then the file i$ on the...
o default volume,
o named volume,
o system volume.

":" o volume associated
with that device.

A Volume Name must...
o have seven characters or fewer,
o contain only letters (A - Z), digits (0 - 9),

period, underline, dash, slash, and back slash.

A File Name...
o must have fifteen characters or fewer,
o must contain valid characters as defined above,
o may have a File Suffix indicating its type.

If the File Suffix is...
o ".TEXT"
o ".BACK"
o ".CODE"
o ".SVOL"
o ".BAD"
o anything else

Then the file is...
o a text file,
o a backup text file,
o an executable code file,
o a subsidiary volume file,
o a file containing bad blocks,
o a data file.

If the Size Spec is...
o left out or "[0]"
o "[" number "]"
o "[*]"

Then the size of the file is the...
o largest unused area,
o indicated number of blocks,
o larger of 1) second largest area,

or 2) half the largest area.

The standard Device Numbers and Volume Names are:
#1: CONSOLE:
#2: SYSTERM:
#3:
#4: _
#5: _
#6: PRINTER:
#7: REMIN:
#8: REMOUT:

Display and keyboard with echo
Display and keyboard without echo
Reserved for future use
First storage device
Second storage device
Printing device
Serial input
Serial output

Mark Overgaard • Stan Stringfellow

This book introduces you to the UCSD p-System, a software environment that can
be used on most kinds of personal computers. The p-System allows you to use a
host of application programs that others have developed. These programs can help
you to run a company, to write a book, or assist you in many other pursuits.

You can even develop your own programs, either for use as serious tools or for
entertainment or education. This book emphasizes three types of p-System uses:
using application programs that others have developed; editing and printing texts;
and developing your own programs.

Each of the three parts of the book provides a different perspective on their three
areas:

• Getting Started shows you (in a “hands-on,” step-by-step fashion) enough of
the capabilities of the p-System for useful work in the three areas of interest.

• Getting Interested provides descriptions of all the basic p-System facilities and
is organized so that you can read it systematically or reference it occasionally.

• Getting Serious provides a “larger view” of the p-System, describes aspects of
the p-System’s design that may influence how you use the system in the longer
term, and introduces the wide range of additional tools and program building
blocks that are available for the p-System.

013658070
PRENTICE-HALL INC., Engl05/16/2017 8:04-3

ISBN 0-13-bSfl070

